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GENERAL INTRODUCTION 

The interest in new materials and their properties has produced a 

synergistic collaboration between chemistry and material science resulting in 

new methodologies^"^ for the preparation of ceramics® and refractory metal 

oxides, carbides and nitrides®. Traditional processing of ceramics utilize high 

temperatures and long reaction periods in order to obtain the required diffusion 

rates for the completion of the reaction, increased purity and lower processing 

temperatures^ are obtainable by utilization of molecular precursors designed for 

the application. One example of new methodologies is sol-gel processing^ 

which offers the advantage of mixing the elements on an atomic level prior to 

heat processing which lowers the diffusion distance required for final phase 

formation and potentially lowers the temperatures at which these ceramics can 

be processed. It is through the use of molecular precursors coupled with 

appropriate processing techniques that metastable (thermodynamically unstable 

and kinetically stable) compounds which cannot be obtained using conventional 

processing techniques can be produced. 

Molybdenum and tungsten nitrides x<1) have been made by 

heating the metal oxides in flowing ammonia at high temperatures®, reaction of 

the metal halide^® (MoClg) with ammonia at 400-800 °C, reactive sputtering and 

ion implantation^ \ and nitrogen plasma reactions^All of these reactions are 
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conducted at temperatures above 400 °C resulting in a metal nitride with a 

metal oxidation state of 3+ or lower. The thermodynamic studies of Lyutaya^^ 

and Lakhtin '̂* demonstrated that the Gibbs free energy of formation (AG^°) of 

M02N is inversely related to temperature. The decomposition of metal nitrides 

is enthalpically and entropically driven due to the exothermic formation of Ng 

(NsN bond energy is 934 Kj/mol) and the evolution of gas, respectively. The 

decomposition of a transition metal dinitride can be represented by the following 

scheme: 

MNg > MN + 1/2 Ng 

2MN > MgN + 1/2 Ng 

MgN > 2M + 1/2 Ng 

This sequence of decomposition is simplified but it does establish the stability 

order, generally, in the tungsten and molybdenum nitrides. Relatively few 

reports of tungsten and molybdenum nitrides in oxidation states higher than (III) 

have been given. WNg was reported by Khitrova^® to form as a result of 

nitriding thin films of tungsten with ammonia at elevated temperatures. The 

metal was quenched and only the thinnest regions of the film displayed the 

rhombohedral, WNg as characterized by TEM. A higher nitride of molybdenum, 

identified as a gold colored conductive compound with the stoichiometry, 

MOgNg, was prepared by the chemical vapor deposition (CVD) of Mo(NMe2)4 in 
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ammonia gas.^® 

Part of this work focuses on the synthesis, reactivity and thermal 

decomposition of tungsten and molybdenum nitride and azide compounds to 

yield higher nitrides of the metals, not obtainable using conventional processing. 

A project relating to tungsten oxides grew out of the nitride research when it 

was discovered that a hexagonal tungsten oxide bronze phase could be 

prepared from tungsten nitrido and imido reactantsJ^ Upon further 

investigation, the parameters of hexagonal phase formation were elucidated 

and a detailed structural study, utilizing neutron powder diffraction, was 

completed for the bronze and will be reported hereafter. 

Explanation cf Dissertation Format 

This dissertation consists of four sections, each of which are formatted 

for publication in a technical journal. However, each section would be subject 

to modification, prior to submission. The references cited in the general 

introduction are found at the end of the dissertation, while each section contains 

an Independent listing of references cited in that section. 
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SECTION I. SYNTHESIS, CHARACTERIZATION AND STRUCTURE 

OF THE TUNGSTEN-NITROGEN HETEROCYCLE: 

[WNCI314 
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INTRODUCTION 

One of the fundamental objectives of this research is to synthesize 

molecular reactants that can be converted to desired high oxidation state metal 

nitrides of tungsten which are metastable (thermodynamically unstable). WNCI3 

represents a potentially significant intermediate between WCIg and a desired 

product, WN2. WNCI3 was prepared initially by Kurt Dehnicke et al/ in 1965 

by the reaction of WCIg and chlorine azide (CIN3) in carbon tetrachloride at 30 

°C. More recent studies have utilized trimethylsilylazide^ and 

tris(trimethylsilyl)amine^ as the nitriding reactants for the formation of MNCI3 

from tungsten or molybdenum halides. Since the initial preparation of MNCI3 

(M=Mo,W)^ which was characterized by infrared spectroscopy, X-ray powder 

diffraction and elemental analysis, [IVIoNCIg] '̂*, [MoNCIg'OPCIg]^^, 

[WNCIg'OPCy '̂ZOPCIg^, [WNCIg'O.SHNg]/ and [WNCIg'NCPh '̂SCHgClg^ 

represent some of the tetrameric compounds that have been characterized 

structurally by single crystal X-ray diffraction methods. WNCI3 was formulated 

as a polymer [WNCy^ in a 1981 review of metal nitride multiple bonding®. 

Two possibilities for polymeric WNCI3 are readily apparent. One would possess 

an infinite planar zig-zag chain geometry which has yet to be observed and the 

other would contain a linear chain similar to those found in ReNCI^^® and WN{t-

BuO)3^\ The crystal structure of WNCI3 as a compound uncoordinated by 
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other iigands has been conspicuously absent from the literature. 

In order to fully utilize WNCI3 as a starting material for tungsten nitride 

synthesis, a new method for production of WNCI3 has been developed which 

yields relatively pure WNCI3 in high yields. The structure of [WNCIg]^ has been 

determined by single crystal X-ray methods. Three different compounds of 

WNCI3 have been identified by single crystal and powder X-ray diffraction and 

the differences in structure attributed to the interactions of solvent molecules 

with the [WNCl3]^ units. The solvent appears to coordinate to the tungsten, 

trans to the W-N multiple bond. This coordination seems to disrupt the packing 

and inter-chloride linking of adjacent tetrameric [WNCl3^units. 
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EXPERIMENTAL SECTION 

Materials 

AN the materials reported in this section are extremely reactive with 

oxygen and water. Manipulations of oxygen- and water-sensitive compounds 

were performed under inert atmosphere conditions using standard drybox, 

vacuum and Schlenk techniques. 

Dichloromethane and 1,2-dichloroethane (DCE) were dried by refluxing 

the solvents over phosphorus(V) oxide or calcium hydride for greater than 6 

hours to remove all water, degassed by three freeze-evacuate-thaw cycles and 

vacuum distilled onto 3 Â molecular sieves, which had been heated to 250 °C 

under dynamic vacuum, prior to use. The organic solvents were transferred for 

further reactions by either vacuum distillation or syringe with an inert gas flow. 

Tungsten hexachloride was obtained from Pressure Chemical Co. and sublimed 

using a three chamber sublimation tube to remove the tungsten oxychlorides 

{WOCI4, WOgClg) by sublimation to the outer chamber, then subliming the 

purified WCIg into a central chamber and isolating it in a dry-box. 

Trimethylsiiylazide (TMSA) was obtained from Petrarch Chemical Co. and 

transferred to a solvent flask and stored in the dark, under vacuum, to avoid 

photolytic decomposition of the azide. 



www.manaraa.com

8 

Analytical Procedures 

Tungsten was determined using a gravimetric procedure in which the 

tungsten containing material was weighed, by difference, into tared ceramic 

crucibles and treated with nitric acid to convert all of the tungsten containing 

material to WO3. The crucibles were then heated to 820 °C for 1 to 10 hours, 

allowed to cool in a desiccator and reweighed. This process was repeated until 

constant weight was achieved. 

Chloride was determined by use of a potentiometric titration. In the 

drybox, the chloride containing material was weighed, by difference, into dried, 

250 mL beakers which were then covered with Parafiim and subsequently taken 

into a fume hood where the samples were treated with 1 to 3 M sodium or 

potassium hydroxide and heated to facilitate decomposition. If the samples did 

not decompose completely, hydrogen peroxide was added which, in every case, 

decomposed the samples entirely. The hydrogen peroxide was decomposed by 

boiling the solutions for an additional 1 to 3 hours. The cooled, basic solutions 

were then acidified with 1 M nitric acid to a methyl red endpoint and chloride 

was determined using a potentiometric titration with a standardized silver nitrate 

solution. 
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Synthesis 

In a typical preparation, a solution of DCE (15 mL) and TMSA (2.34 mL, 

17.6 mmole, 2.03 g) was added drop-wise (approximately 3 drops/sec) to a 

refiuxing solution of WCIg (6.975 g, 17.6 mmole) in DCE (80 mL), which was 

mixed with a rotating magnetic stirring bar. During the reaction the color of the 

solution remained purple but the color of the particulate solid changed from 

purple to brown-orange after 2 days. The reaction solution was allowed to 

continue at refiuxing temperature for three days, after which the mixture was 

filtered using a porous ceramic filter in an evacuable pyrex tube. The solid 

WNCIg, isolated on the frit, was extracted with clean DCE for approximately 2 

days to eliminate any silane compounds or remaining WCIg. The solid was 

then dried under vacuum for a period not less than 12 hours and isolated in a 

drybox. A typical yield was 4.20 g (78.5%). The WNCI3 was then heated 

under dynamic vacuum at 160 °C for 12 hours to eliminate DCE and WCIg. 

Anal. Calcd for WNCIg: W, 60.43; CI, 34.96; W:CI, 1:3.00. Found (before 

heating): W, 55.18; CI, 32.53; W:CI, 1:3.06. Found (after heating): W, 60.32; 

CI, 34.60; W;CI, 1:2.98. IR (Nujol, cm'̂ ) of WNCI3 (before heating): 1082 s, 

(u(W=N));^2 685 s, (v(C-CI)); 400 s, 385 s, 371 s, 358 s, 315 s, (\)(W-CI)). IR 

of WNCI3 (after heating): 1082 s, (D(W=N)); 399 s, 374 s, 361 s, 356 sh, 331 s, 

309 s v(W-CI). 
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Physical Measurements 

Infrared spectra were obtained from a IBM IR/90 or a Bomem MB-Series 

Fourier Transform infrared spectrometer. The samples were prepared as Nujol 

mulls and pressed between Csl plates. The spectra were recorded separately 

for the mid-IR (4000-600 cm'̂ ) and far IR (600-200 cm"^) in the case of the 

IBM spectrometer and from 4000 to 185 cm'̂  with the Bomem spectrometer. 

Most of the spectral baselines were normalized, using non-linear baseline 

algorithms. 

X-ray powder diffraction data were obtained from an Enraf-Nonius Delft 

triple-focusing Guinier camera using copper Kou,, radiation (X=1.54056), a 

Philips ADP3520 X-ray powder diffractometer or a Scintag 0-0 diffractometer 

using Cu KoL, ,Ka2 averaged radiation. Two air-tight chambers for x-ray powder 

diffraction were designed and built to accommodate air-reactive materials. A 

cylindrical sample holder (Figure 1-1) was developed for the Philips 

diffractometer. The powdered, air-sensitive samples were mounted by pressing 

the powders into a recessed square or circular region (created by sandblasting 

a quartz slide with the appropriate template) in the single crystal quartz plate 

(obtained from Gem Dugout)^ with a microscope slide to insure that the 

surface of the powder and the quartz plate were coplanar. The surface of the 

quartz plate in the holder was designed to align with the mounting tab on the 
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rear of the main chamber to insure proper elevation of the sample with respect 

to the X-ray focal distance. After the quartz plate was placed in the sample 

holder, the chamber was closed with an o-ring sealed face plate which creates 

a positive pressure in the holder. Thus, even with the Mylar window, an 

effective barrier to water vapor and oxygen diffusion was maintained for greater 

than 24 hours for most of materials tested. The Scintag environment cell had 

to be modified in accordance with the diffractometer geometry (see Fig. 1-2). 

Similar principles were used in the design of the Scintag cell as those used in 

the Philips cell. However the following difference is worth noting. The positive 

pressure produced within the Scintag cell will not be as great as that in the 

Philips cell. But with the use of tightening screws, the o-ring can form a tighter 

seal in the Scintag cell and therefore should represent an improvement over the 

Philips cell. 

Crystal Growth and Mounting 

Numerous attempts were made to obtain crystals of WNCI3 Cooling 

saturated solutions and layering non-polar solvents on top of saturated solutions 

of WNCI3 produced only finely divided powders. It was during the final heating 

step in the WNCI3 synthesis that small (10 to 30 micron) orange crystallites 

were observed to form in the cooler end of the tube. In order to produce larger 
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Figure 1-2. Mylar-windowed aluminum sample holder for X-ray powder diffraction analyses of air reactive 
compounds. Designed for use with a Scintag 8-8 diffractometer using copper radiation 
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crystals, small samples of WNCI3 (15 mg) were sealed under vacuum in 15 cm 

by 1 cm (outer diameter) pyrex tubes and placed in a two zone furnace under a 

thermal gradient of 10 °C at several temperatures ranging from a 160 to 170 °C 

gradient to a 290 to 300 °C gradient. It was found that crystallites of 

sufficientsize (3 to 400 micron) for single crystal x-ray diffraction could be 

obtained by sublimation of the WNCI3, using a thermal gradient of 290/300 °C 

for 3 days. In sublimation experiments conducted above 200 °C only a small 

amount of the WNCI3 actually sublimed while the rest decomposed to a non­

volatile black solid. The crystals were mounted in 0.5 mm capillary tubes with 

Apiezon grease using a microscope drybox in Dr. J. D. Corbett's group. The 

crystallites had a platelet geometry with dimensions 300 x 400 x 50 microns. 

Data Collection and Structural Determination 

Data were collected at room temperature with an Enraf-Nonius CAD4 

diffractometer. Lattice parameters were determined from 15 reflections with 

18.5 < 20 < 32.4°. Graphite-monochromated Mo Ka radiation was used to 

collect the data with a two-theta range of 4 to 60°. The 0-20 scan technique 

was used. The data were corrected for Lorentz and polarization effects. The 

transmission factors, based on scans, varied from .99 to .25, which was 

reflective of the crystal platelet geometry. An empirical absorption correction 
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was made based on the Psi scans. The intensities of three standard 

reflections were constant throughout the data collection, therefore a standard 

correction was not applied. 5742 reflections were collected, of which 2399 were 

unique with > 3. The structure was solved by Patterson methods 

(SHELXSSe)^"^ and refined by full matrix least-square techniques using 

TEXSAN^® programs to R=0.041 and R^=0.049. All atoms were located and 

refined anisotropically. The final electron density difference map contained 

many peaks, with the highest being at 6.4 elP?. All the large difference Fourier 

peaks were near the tungsten atoms with distances less than 1.00 À from 

tungsten. An improved absorption correction would be needed to provide a 

better fit of the data. 

Details of the data collection are given in Table 1-1 . Final atomic 

positional parameters and selected bond distances and angles are given in 

Tables 1-2 and 1-3 respectively. The anisotropic temperature factors are listed 

in Table 1-4. 
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Table 1-1. Crystal Data Summary for [WNCy^ 

Compound [WNClg] 

Formula Weight 396.57 

Space Group PT 

a, Â 7.7517(9) 

b, Â 8.143(1) 

c, À 9.114(1) 

a, deg 98.71(2) 

P, deg 107.52(2) 
y, deg 110.40(2) 

V, 492.6(4) 

Z 4 

dcalc 4.10 
Crystal size, mm 0.4 x 0.2 x 0.1 

li(MoKix), cm'^ 254.3 

Data collection instrument Enraf-Nonius CAD4 

Radiation (monochromated in incident beam) MoKa(X=0.71073Â) 

Orientation reflections, number, range (20) 15, 18.5 < 2© < 32.4 
Temperature, °C 22(1) 

Scan method 0-20 

Data collection range, 20, deg 4.0 to 60.0 
No. data, collected 5742 

unique 4945 

with Fj^>3o(F^h 2399 

Number of parameters refined 92 

Trans, factors, max., m in. (psi-scans) 0.999, 0.25 

R^ 0.041 

R^^ 0.049 

Quahty-of-fît indicator^ 1.38 

Largest shift/esd, final cycle 0.01 

Largest peak, e/Â^ 6.4(3) 

aR=2:||Fq| - iFgll/ZlF I 
^ R^=[Zw( I F^ I - I Fç I mw IF I 2]l/2. w=l/G2( | F | ) 
^ QuaHty-of-fit=[Sw( IF^ | -1F J rAN^bs'^parm)] 
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Table 1-2. Positional Atomic Parameters and Isotropic Temperature Factors 

for [WNCIg^ 

Atom X y z 

W(1) 0.13376(4) 0.36229(4) 0.12713(3) 1.164(5) 

W(2) 0.01355(4) 0.05435(4) 0.72568(3) 1.201(5) 

Cl(1) 0.3233(3) 0.0473(3) 0.3865(3) 2.38(4) 

Cl(2) 0.1921(3) 0.6484(3) -0.0158(2) 1.98(4) 

Cl(3) -0.3145(3) -0.0400(3) 0.2057(3) 2.59(4) 

Cl(4) 0.4498(3) 0.4064(3) 0.1612(3) 2.61(4) 

Cl(5) 0.0758(3) 0.2311(3) 0.5535(2) 2.13(4) 

Cl(6) 0.2188(3) 0.5798(3) 0.3531(2) 2.64(4) 

N(1) 0.0605(8) 0.1734(8) 0.1892(6) 1.3(1) 

N(2) -0.0643(9) 0.7845(8) 0.1061(7) 1.6(1) 

^Anisotropically refined atoms are given in the form of the 

isotropic equivalent displacement parameter defined as; 
(4/3) * [a2*B(1,1) + b2'B(2,2) + c2'B(3,3) + ab(cos gamma)*B(1,2) 

+ ac(cos beta)'B(1,3) + bc(cos alpha)'B(2,3)]inst2> 
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Table 1-3. Selected Bond Distances and Bond Angles for [WNCy^ 

Bond Distances in Angstroms® 

Atom 1 Atom 2 Distance Atom 1 Atom 2 Distance 

W(1) Cl(2) 2.386(2) W(2) Cl(1) 2.275(2) 

W(1) Cl(4) 2.263(2) W(2) 01(3) 2.276(2) 

W(1) Cl(6) 2.253(2) W(2) Cl(5) 2.328(2) 

W(1) N{1) 1.690(6) W(2) N(1) 2.081(6) 

W(1) N{2) 2.081(6) W(2) N(2) 1.702(6) 

Bond Angles in Degrees 

Atom 1 Atom 2 Atom 3 Angle Atom 1 Atom 2 Atom 3 Angle 

Cl(2) W(1) Cl(4) 160.81(7) Ci(1) W(2) Cl(5) 94.94(7) 

Cl(2) W(1) Cl(6) 92.80(8) Cl(1) W(2) N(1) 82.3(2) 

Cl(2) W(1) N(1) 95.0(2) Ci(1) W(2) N(2) 99.7(2) 

Cl(2) W(1) N(2) 83.5(2) Cl(3) W(2) Cl(5) 93.55(8) 

Cl(4) W(1) Cl(6) 95.41(8) Cl(3) W(2) N(1) 82.7(2) 

Cl(4) W(1) N(1) 100.6(2) Cl(3) W(2) N{2) 98.6(2) 

Cl(4) W(1) N(2) 84.3(2) Cl(5) W(2) N(1) 160.1(2) 

Cl(6) W(1) N(1) 100.0(2) Cl(5) W(2) N(2) 101.7(2) 

Cl(6) W(1) N(2) 165.8(2) N(1) W(2) N(2) 98.2(2) 

N(1) W(1) N(2) 94.0(2) W(1) N(1) W(2) 176.8(3) 

Cl(1) W(2) Cl(3) 157.85(8) W(1) N(2) W(2) 165.6(4) 

^Numbers in parentheses are estimated standard deviations in 
the (east significant digits. 
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Table 1-4. Table of General Displacement Parameter Expressions for 
[WNcy/ 

Atom B(1,1) B(2,2) B(3,3) B(1.2) B(1,3) B(2,3) B eqv 

W{1) 1.523(7) 0.776(8) 1.207(7) 0.531(6) 0.489(6) 0.260(7) 1.16 4(5) 

W(2) 1.688(7) 0.887(8) 1.144(7) 0.587(6) 0.635(6) 0.287(7) 1.20 1(5) 

Cl(1) 1.83(5) 2.11(6) 2.95(7) 0.93(4) 0.45(5) 0.72(6) 2.38 (4) 

Cl(2) 1.74(4) 1.91(6) 2.70(5) 0.87(4) 0.98(4) 1.19(5) 1.98 (4) 

Cl(3) 1.95(5) 2.74(7) 3.12(7) 1.13(4) 0.90(5) 0.72(6) 2.59 (4) 

Cl(4) 1.81(5) 2.80(8) 3.24(7) 0.97(5) 0.96(5) 0.90(6) 2.61 (4) 

Cl(5) 3.53(6) 1.24(6) 1.87(5) 0.90(4) 1.40(4) 0.59(4) 2.13 (4) 

Cl(6) 4.02(7) 1.61(6) 1.92(6) 1.32(5) 0.81(5) -0.20(5) 2.64 (4) 

N(1) 1.7(2) 1.0(2) 1.2(2) 0.6(1) 0.6(1) 0.4(1) 1.3(1) 

N(2) 2.2(2) 0.7(2) 1.4(2) 0.4(1) 0.5(1) 0.2(1) 1.6( 1) 

®The form of the anisotropic displacement parameter is: 
exp[-0.25{h2a2B{1,1) + k2b2B(2,2) + |2c2B(3,3) + 2hkabB(1,2) + 2hlacB(1,3) 
+ 2klbcB(2,3)}] where a,b, and c are reciprocal lattice constants. 
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RESULTS AND DISCUSSION 

Synthesis of [WNCy^ 

The following reactions define the pathway to formation of WNCIg: 

WClç + {CHj)^SiN^ W{N^)C1^ + {CHj)^SiCl  

The intermediate, W(Ng)Clg, is relatively stable. When the reaction is 

conducted in refluxing dichloromethane (DCM) at 40 °C, decomposition of the 

azide intermediate does not occur after 6 days, whereas the reaction when 

conducted in refluxing DCE at 84 °C, leads to ready decomposition of the azide 

after 2 days. It was noted by Dehnicke and coworkers^ that an insoluble dimer 

forms between WNCIg and WCIg below 80 °C which has the formula WgNCIg. 

The formation of a compound with high chloride content was substantiated in 

early reactions where high chloride analyses were obtained for the products. In 

order to avoid the formation of the dimer, a TMSA/DCE solution was added 

directly to a refluxing DCE solution of WCIg. The dimer did not form and 

relatively pure WNCIg was produced in yields above 75 percent. The mid-1 R 



www.manaraa.com

21 

spectrum of the WNCI3 always contained an unexpected band at 685 cm'̂  

which was assigned to a C-CI mode of bound DCE. Heating the WNCig to 

160°C under dynamic vacuum was required to remove all of the DCE (Fig. 1-3). 

The DCE was identified by ^ H NMR of the volatile components in deuterated 

chloroform from heating WNCI3 160 °C under dynamic vacuum. DCE was 

the only ^ H NMR-active volatile material isolated from this heating experiment. 

Structure of [WNCI3I4 

[WNCig]^ is a tetramer in which the four tungsten and four nitrogen 

atoms define one plane (Fig. 1-4). There are essentially two significantly 

different tungsten-nitrogen bond lengths forming an alternated multiple 

bond/single bond ring system. The multiple bond (formally a triple bond), which 

has been assigned a bond order of 2.2 by Goubeau^® in the molybdenum 

analog, has a bond distance of 1.696 À (ave), whereas 2.081 À is the distance 

of the W-N single bond. The coordination around tungsten in the discrete 

tetramer is a distorted square pyramid where three basal chlorides and one 

nitrogen atom define a plane below the tungsten atom. A chloride atom from 

an adjacent tetramer is weakly bonded (d(W-CI)=2.850 À ave.) in the sixth site, 

trans to the W-N multiple bond, which results in a distorted octahedral 

coordination around tungsten. It is this sixth site that is potentially occupied by 
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Figure 1-3. Mid-infrared Nujol mull spectrum of WNCIg heated to 160 °C 
under dynamic vacuum for 3 hours (A) and corresponding 
spectrum of unheated WNCIg isolated after vacuum drying (B). 
The peak at 685 cm"^ is attributed to D(C-CI) and is eliminated by 
heating the product. The peak at 1080 cm'̂  is due to the 
stretching mode of the W-N multiple bond. All other peaks arise 
from Nujol oil 
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C U 2 ) '  

Figure 1-4. Ortep drawing of [WNCIg]^ with 80% thermal ellipsoids. The view 
is along the 100 direction. Cl{2)' and Cl(5)" are chlorides from 
adjacent tetramers. An inversion center lies at the center of the W-
N ring 
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chlorine from DCE and probably accounts for the tenacious retention of DCE. 

Coordination of WNCI3 by basic ligands occurs in this trans position as verified 

by several recent papers® and should be the site of initial coordination of 

reactive molecules such as ammonia or trimethylsilylazide. Because of the 

strong tungsten-nitrogen multiple bond, any coordinated ligand in the sixth 

position would be weakly bound, due to the trans effect. 

The extended interactions of WNCI3 in the solid state are of two types. 

Along the b axis the inter-ring chloride bridges lie in the plane of the tungsten-

nitrogen heterocycles, whereas the chloride bridges along the c axis are normal 

to the plane of the ring. This difference in packing predicts a variation in W-N 

multiple bond distances due to the difference in tungsten-chloride inter-tetramer 

dative bond distances between the parallel (along B) and normal (along c) 

bridges. Based on the trans relationship between the dative chloride bond and 

the W-N multiple bond, one would predict an inverse relationship between the 

two bond distances. The tungsten heterocycle does not show a significant 

difference in the W-N multiple bond distances, d(W(1)-N(1)) = 1.690 (6), 

d(W(2)-N(2)) = 1.702 (6) Â, which would correspond to a difference in the 

dative bond distances (d(W(l)-CI(X') = 2.805 (3), d(W(2)-CI(X") = 2.895 (3) Â). 

The molybdenum analog (2) does show the observed trend (Table 1-5) but the 

Mo-N multiple bond distances are within 3 a of each other and therefore a 

meaningful conclusion cannot be determined. The extended interactions of the 
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1-5. Comparison of Bond Lengths in Selected [MNCIg] Tetramers. Distances Given in Angstroms 

Bonds [WNCIgU 
(1) 

[MoNCl3]4 
(2) 

[WNCIg* 
O.SHNg^ 

(3) 

[WNCl3'NCPh]4 
(4) 

[WNCI3.OPCI3I4 
•20PCL 

(5)'  

M(1)-N(1) 1.690(6) 1.672(10) 1.69(3) 1.65(2) 1.671(2) 

M(1)-N(2) 2.081(6) 2.198(11) 2.11(3) 2.08(2) 2.169(3) 

M(1)-CI(2) 2.386(2) 2.379(7) 2.30(1) 2.280(6) 2.287(3) 

M(1)-CI(4) 2.263(2) 2.270(5) 2.28(1) 2.291(6) 2.318(3) 

M(1)-CI(6) 2.253(2) 2.241(10) 2.27(1) 2.270(6) 2.336(3) 

M(1)-X'̂  2.805(3) 2.822(7) 2.44(2) 2.49(2) 2.379(2) 

M{2)-N(1) 2.081(6) 2.143(10) 2.08(3) 2.11(2) 2.163(2) 

M(2)-N(2) 1.702(6) 1.638(11) 1.68(3) 2.28(2) 1.648(3) 

M(2)-CI(1) 2.275(2) 2.278(9) 2.26(1) 2.283(6) 2.318(2) 

M(2)-CI(3) 2.276(2) 2.276(5) 2.38(1) 2.324(6) 2.359(3) 

M(2)-CI(5) 2.328(2) 2.316(6) 2.30(1) 2.315(6) 2.323(3) 

M(2)-X"* 2.895(3) 2.937(7) 2.80(2) 2.28(2) 2.316(3) 

®Both X'and X" represent CI, N or O atoms weakly bonded trans to the metal nitrogen multiple bond. 
For molecules (1) and (2) X',X"=CI; (3) and (4) X',X"=N; {5a) and (5b) X',X"=0. 
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tetrameric units can be seen in Figures 1-5 to 1-7. 

The bond lengths and angles of WNCIg are similar to those in previously 

prepared tungsten and molybdenum nitride tetramers (Table 1-5), within 

statistical deviation. The exception is found in the length of the M-N single 

bond and the M-CI" dative bond, which are shorter in WNCIg relative to 

MoNCIg. This lengthening of the two bonds may reflect a slightly stonger 

bond for M0NCI3. 

WNCIg was initially investigated by x-ray powder diffraction^. In this 

study, powders of WNCI3 were characterized by x-ray diffraction using the 

environment cell for the Philips diffractometer described previously in this 

section. A comparison between the x-ray powder data reported by Dehnicke^ 

for WNCI3, a spectrum of the un heated WNCI3 prepared in this investigation, a 

spectrum of WNCI3 heated to 160 °C under dynamic vacuum and a calculated 

powder pattern using the GSAS '̂* diffraction software based on the unit cell 

information obtained from the [WNCl3]^ structural solution indicates that there 

are at least three separate crystallographic modifications for WNCI3 (Fig. 1-8). 

The particular modification appears to be dependent on the method of 

preparation. Many reflections were observed for each form of WNCI3, which 

indicates that each crystallizes in a lower symmetry group, probably triclinic, 

based on the number of lines in each spectrum. The diffraction pattern of the 

heated WNCI3 and the simulated pattern are essentially the same. Because 



www.manaraa.com

Figure 1-5. Ortep drawing of the extended interactions of the WNCI3 tetramers 
with unit cell representation. The viewing direction is 
perpendicular to the plane formed by the b and c axes 
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Figure 1-6. Ortep diagram of the tetrameric tungsten-nitrogen rings with the 
chloride atoms removed for clarity. The rings that are connected, 
running along the b axis, are in the same plane whereas the W-N 
heterocycles along c stack in a stair-step fashion 
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Figure 1-7. Ortep diagram showing the extended interactions of [WNCIg]^ with 
the same perspective as Fig. 1-6. The inter-ring chloride bridges 
are parallel to the W-N rings along 5 and perpendicular to rings 
along c 
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extraneous solvent molecules coordinating trans to the multiply bonded nitrogen 

appear to cause a disruption of the inter-tetramer W-CI linkage, it is likely that 

the structural variations are due to solvent molecules coordinating in these trans 

positions. The differences between the heated and unheated WNCI3 X-ray 

powder data reflect this. After the tungsten, chloride and nitrogen percentages 

were subtracted from the unheated WNCI3 "^^ss, 8.2 % of the material 

remained. The only other compound in the unheated WNCI3 was found to be 

DCE. If the DCE comprises the remaining 8.2 % in WNCI3, the ratio of DCE to 

[WNCIg]^ was found to be 1.1:1. This indictes that, on the average, 

approximately one molecule of DCE is coordinating to each WNCIg tetramer. 

Three variations of the WNCI3 extended lattice have been presented. Based on 

these variations it is likely that many other modifications may be possible as the 

nature and amount of coordinating solvent in the extended lattice is varied. 

Physical Measurements 

Infrared spectroscopy has been used extensively to characterize the 

molybdenum and tungsten tetramers. The utility of IR is based on the strong 

stretching mode of the metal-nitrogen multiple bond which Is found at 1082 cm" 

^ in the tungsten case and at 1045 cm"^ for molybdenum. The original 1966 

paper on the synthesis and characterization of 
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MNCIg^ (M=W,Mo) and a review of metal nitrides 15 years later reports the 

tungsten-nitrogen multiple bond stretching modes with bands at 1068 and 1084 

cm'̂  in the IR spectra. The IR spectra for every sample of WNCIg synthesized 

in this work has shown only a single band for the W-N stretching mode. The IR 

spectrum for single crystals of WNCIg in a Nujol mull is shown in Figure 1-9. 

This fundamental difference in IR stretching modes between Dehnicke's original 

work and this report indicates that the WNCIg produced in this work differs from 

that prepared by Dehnicke^ not only in the way the tetramers are packed in the 

lattice but also possibly in the tungsten-nitrogen connectivity. 
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Figure 1-8. Comparisons of the experimental and calculated X-ray powder 
diffraction for [WNCIg]^. (A) X-ray diffraction of unheated WNCIg 
(with included DCE), (B) Simulated X-ray pattern for WNCIg as 
reported by Dehnicke\ (C) X-ray pattern of WNCIg which has 
been heated to 160 °C under dynamic vacuum for 3 hours. (D) 
Calculated X-ray pattern using single crystal data from refinement 
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Figure 1-9. Mid IR spectrum (^Nujol) of WNCI3 single crystals formed by vacuum sublimation. The 
peak at 1086 cm" is the stretching mode of the tungsten-nitrogen multiple bond (Nujol 
oil accounts for all other peaks) 
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CONCLUSION 

A new synthetic approach to WNCIg has been developed in which dimer 

formation and impurities are minimized. This procedure is relatively convenient 

and minimizes the formation of an insoluble dimer between WCIg and WNCIg by 

allowing the reaction to proceed only at temperatures above 80 °C. 

Uncoordinated [WNCIg]^ has been structurally characterized for the first time 

and is comparable to the previous molybdenum and tungsten nitride-trichloride 

tetramers except for a difference in the W-N single bond lengths. The WNCIg 

tetramer has been shown to form in three independent structural variations, 

depending on the reaction conditions. This difference in structure has been 

attributed to a disruption of the packing of tetrameric WNCIg units by the 

interaction of chlorinated hydrocarbons in the trans position to the W-N multiple 

bond. 
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II. REACTIVITY OF [WNCIg]^ WITH SELECTED NITRIDING 

AGENTS TO YIELD TUNGSTEN NITRIDES, AMIDES, 

AND AZIDES 
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INTRODUCTION 

Binary tungsten nitrides have been investigated generally for their 

interesting electrical and refractory properties. Thin films of binary tungsten 

nitrides WN^ (x < 1) have been developed for use in electronic devices, 

especially as Schottky gates to GaAs semiconductors. '̂̂  Some tungsten 

nitrides have been shown to be superconductors, with higher superconducting 

transition temperatures than the pure metal.^ The cubic p-WgN phase is a 

refractory solid, and as such has applications in cutting tools, wear-resistant 

parts and materials constucted for elevated temperature use. Conventionally, 

tungsten nitrides are made by the reaction of the pure metal (usually finely 

powdered) and ammonia."^ By using this technique or the reaction with WO3 

only WgN is produced, with no indication of higher nitrides formed.® The 

formation of N=N and lower nitrides in the thermal decomposition of MN 

accounts for the thermal instability in higher nitrides, (x > 1), relative to 

binary tungsten oxides. WNg has been synthesized as a thin film by treatment 

of thin tungsten sputter-coated films at 750 °C for 3 hours with rapidly flowing 

ammonia and subsequent rapid cooling. The resulting WNg was characterized 

by TEM.® WNg has not been synthesized in bulk quantities. Due to the 

thermodynamic instability of WNg, low temperature reactions of activated 

tungsten compounds with appropriate nitriding agents may be necessary for its 
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formation. As mentioned in Section I, WNCI3 represents a potentially significant 

intermediate in the pathway to higher tungsten nitrides (WN^^ 1 < x < 2). The 

conversion of WNCI3 to a binary nitride, WNy (0 < y < 2), has not been 

reported; in fact, most of the work with WNCI3 focused on the preparation 

and characterization of molecular WNCI3 adducts, such as [WNCIg'O.SHNg]^^, 

WNCIg(2,2'-bipyridine)^ and [WNCl3(CH3CN)]^^. The first step in the reaction 

of WNCI3 and basic molecules usually involves coordination of the reactant 

molecule to the tungsten site, trans to the tungsten-nitrogen multiple bond, 

although reaction at the nitride site with Me3P was observed in the formation of 

[W(NPMe3)Cl2(PMe3)3]CI^° from the reaction of WNCI3 and ^63? in 

deuterated methylene chloride. In WNCI3, trans coordination of basic ligands to 

the tungsten center causes perturbations in the W=N infrared stretching 

frequency.^ ^ For example, the infrared spectrum of [WNCl3'0.5HN3]^^ ̂  shows 

two peaks attributed to D(W=N) at 1082 and 1050 cm'̂ , while the 

corresponding W=N stretching modes for the uncoordinated compound, WNCI3® 

are shifted to higher frequencies, at 1084 and 1068 cm"^, respectively. The 

displacement of CI in the weakly bound trans site of WNCI3 appears to be the 

preferred site for coordination of basic reactive molecules and atoms. In 

attempts to synthesize higher tungsten nitrides, this study focuses on the 

reactivity of WNCI3 with ammonia, trimethylsilylazide and lithium nitride in 

coordinating and non-coordinating solvents. 
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EXPERIMENTAL 

General Considerations 

All the materials reported in this section are extremely reactive to oxygen 

and water. Manipulations of oxygen- and water-sensitive compounds were 

performed under inert atmosphere conditions using standard drybox, vacuum 

and Schlenk techniques. 

Materials 

Anhydrous ammonia (99.9%) was obtained from Matheson Gas Products 

Co. and purified additionally by sodium metal dissolved into liquid ammonia. 

1,2-dichloroethane (DCE), dichloromethane (DOM), pyridine and butyronitrile 

were dried by refluxing the solvent over phosphorus (V) oxide or calcium 

hydride for greater than 6 hours to remove all water, degassed by three freeze-

evacuate-thaw cycles and vacuum distilled onto 3 Â molecular sieves prior to 

use. The organic solvents were transferred for further reactions by either 

vacuum distillation or syringe with an inert gas flow. [WNCIg^ was prepared in 

this laboratory according to a procedure modified from the literature^ ̂  

Tungsten hexachloride was obtained from Pressure Chemical and sublimed 

using a three chamber sublimation tube to remove initially the tungsten 
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oxychlorides (WOCI4, WOgClg) by sublimation to the outer chamber, then 

subliming the purified WCIg into a central chamber and isolating it in a dry-box. 

Trimethyisiiylazide (TMSA) was obtained from HOIs Petrarch Systems, Inc. and 

transferred to a solvent flask and stored in the dark, under vacuum, to avoid 

photolytic decomposition of the azide. Lithium nitride was obtained from Strem 

Chemical, Inc. and stored in a dry box prior to use. 

Analytical Procedures 

Tungsten was determined using a gravimetric procedure as detailed in 

Section I of this report. Chloride was determined by use of a standard 

potentiometric titration with standardized AgNOg. A Cambridge S-200 Scanning 

Electron Microscope (SEM) coupled to a Tracor Northern Micro Z II Energy 

Dispersive Spectrometer (EDS) with a Beryllium or ultra-thin carbon window 

was used to determine relative tungsten and chloride concentrations. The ultra-

thin window was used for light atom determinations. Nitrogen composition was 

determined by the Dumas combustion method^^ on a Carlo Erba Instruments 

NA 1500 Nitrogen/Carbon/Sulfur Analyzer. 

For two of the compounds herein reported, a temperature-programmed 

pyrolysis was conducted in which the volatile decomposition products were 

analyzed with a Finnigan Automated Gas Chromatograph/EI-CI Mass 
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Spectrometer System. In these decomposition studies, approximately 2-4 mg. 

of sample were placed in specially prepared pyrex reaction tubes which were 

centered in a tube furnace vertically and then connected to the ionization area 

of the mass spectrometer by a capillary tube, minimizing the evacuable volume. 

The material was allowed to heat at a controlled rate and a correlation was 

established between the measured temperature and the ion current detected by 

the mass spectrometer for the volatile components of pyrolysis. 

Syntheses 

In the reactions that follow, each product with a unique combination of 

reactants will be labeled with a unique numerical designation. If the reactants 

are the same and only the solvent is varied, each of these reactions will be 

labeled with the same number but a different letter descriptor. 

WNCI3 + N 143(1) —> (1 A). 1.0 gm. of WNCI3 was placed in a 100 mL 

round bottom flask and sodium purified ammonia was vacuum distilled onto 

WNCI3. The ammonia was brought to -40 °C slowly because of the exothermic 

nature of the ammonolysis. WNCI3 was then reacted in liquid ammonia at -40 

°C (the temperature was maintained by a 2-isopropanol low temperature bath). 

The liquid ammonia and WNCI3 were allowed to interact for 1 hour, after which 

time, the ammonia was allowed to boil off, leaving a mixture of black and white 
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solids, 1A and ammonium chloride, respectively. The separation of the two 

solids was accomplished by either washing the ammonium chloride with liquid 

ammonia in a ceramic filtering apparatus designed for this purpose or by 

decanting the ammonium chloride dissolved in liquid ammonia using an 

evacuable tube with a side arm. While the decanting process was quicker, the 

filtering procedure was more effective at removing all the ammonium chloride; 

therefore the material obtained in the preceding reaction was filtered. There 

was a slight solubility of the black product in the ammonia therefore the yields 

were lowered. Based on a molecular formula of WN(NH2)2CI(NH3)2 for the 

black product, 1A, the average yield of the ammonolysis was 54%. Elemental 

analyses for W and CI, mid and far infrared spectra and X-ray powder data 

were obtained for 1 A. Anal. Calc. for WCINgH^g: W, 61.41; CI, 11.84. W.CI. 

Found: W, 61.4; CI, 11.4. Infrared spectrum (Nujol, cm'̂ ) for 1A (Fig. 11-1); 

3000-3200 m, 'u(N-H); 1599 m, 1302 m and 1261 m, 6g(NHg or NHg); the broad 

peak around 802 cannot be conclusively assigned but the absorption most 

closely con-esponds to p^(NHg); 430 - 406 s, •u(W-N); and the weak narrow 

peak at 350 corresponds to \)(W-CI). Powders of 1A are deep black and are 

amorphous to X-ray diffraction. The X-ray diffraction data indicate a complete 

lack of crystallinity, as evidenced by the featureless powder pattern. 

WNCI3 + pyridine + 9NHg —> (1B). In a reaction closely related to 1A, 

WNCI3 (0.315 g, 0.00104 mol) was dissolved completely in 50 mL of 



www.manaraa.com

44 

m 

B.012S 

2501 

B.6212 

0.«382 

600 550 350 500 «50 «00 
VRVENUHBERS CH-1 

250 200 310 

Figure 11-1. Mid and far IR spectra (Nujol) for 1A which was formed by the 
ammonolyses of WNCIg in liquid ammonia at -40 °C 
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pyridine at room temperature. Dried liquid ammonia (0.101 mL, 0.0098 mol) 

was measured in a calibrated vacuum tube and added slowly to the WNCI3. 

The addition was accomplished by connecting the flask containing the purple 

WNCIg/pyridine solution to that of the ammonia, freezing the ammonia and the 

pyridine solution, evacuating the system, allowing the pyridine to liquify and 

then letting the slush bath for the ammonia warm to room temperature. This 

slow addition allowed the gaseous ammonia to react with the pyridine adduct of 

WNCI3 and over the course of 5 days a deeply colored precipitate slowly settled 

from the solution. The product was isolated on a ceramic frit and exposed to 

vacuum for 12 hours to eliminate solvent and residual ammonia. The resulting 

orange-brown solid was insoluble in pyridine. The X-ray powder pattern 

revealed a small amount of ammonium chloride present in the material, while 

the bulk material was amorphous. Infrared spectrum (Nujol, cm'̂ ) for B1 

(Fig. 11-2): 3000-3200 s, •u(N-H); 1600 w, 1300 m, and 1261 m, 6g(NH3 or 

NHg); 1019.8 m, D(W=N); the broad peak around 802 cannot be conclusively 

assigned but the absorption best corresponds to p^(NH3). 430 - 406 s, 'u(W-N). 

The small peak around 350 corresponds to the W-CI stretching frequency. 

WNCI3 + (CH3)3SiN3 -<DCE>~> (2A), (2A'). A 1,2-dichloroethane 

(DCE) solution of trimethylsilylazide (0.220 mL, 1.68 mmol) was added dropwise 

to a stirring suspension of WNCI3 (510 mg, 1.68 mmol) in 30 mL of DCE at 

room temperature. The reaction was mixed for 20 hours under vacuum at 
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Figure 11-2. IR spectra (Nujol) for 1B wiiicli was formed by tlie ammonolyses of WNCI3 in pyridine 
by 9 moles of ammonia gas 
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reflux temperature then heated to 84 °C (reflux) and allowed to react for four 

days. Upon addition of the trimethylsilylazide (TMSA), the solution changed 

from orange to red and remained red for the duration of the room temperature 

reaction (2A), 2A was isolated by extracting, with a syringe, a small amount of 

the reaction mixture prior to heating. The solution was then transferred under 

flowing argon to a dried sealable tube and transferred to a drybox. After the 

mixture was refluxed, the color of the solution changed from red to brown (2A'). 

Yield for 2A': 0.726 g. Anal. Found for 2A'; W = 60.47, CI = 21.45%. IR 

(Nujol, cm'"") for 2A: 2129, 2091 m (^^(Ng)), 1261 m-w (^^(Ng), 1076 s 

(v(W=N)), 802 m-w, 669 w, 399, 378, 362, 332 s (\)(W-CI)). IR (Nujol, cm""") for 

2A': 2129, 2091 m (^JNg)), 1261 m-w (^^(Ng)), 1076 s (\)(W=N)), 802 m-w, 

669 w, 442 s ('d(W-N)), 399, 385 s (•u(W-CI)). 2A and 2A' are very similar in 

their IR absorption spectra. The difference is seen primarily in the peak at 442 

cm'̂  corresponding to an azide nitrogen bound to the tungsten center (see Fig. 

11-3, 4). The X-ray diffraction data for 2A' exhibits several weak peaks 

indicating a degree of crystallinity. The X-ray data do not correspond to the 

WNCIg reactant (see Fig. 11-5). A mass spectrum of the volatile components 

obtained from heating 2A' to 500 °C in a dynamic vacuum was obtained (see 

Fig. 11-6). 

WNCI3 + (CH3)3SIN3 -<pyridlne>-> (2B). WNCI3 (648 mg, 2.13 mm) 

was dissolved completely in 50 mL of pyridine creating a deep red solution. 
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Figure 11-3. Mid IR spectra (Nujol) of 2A (A) and 2A' (B). Differences in the 
spectra are seen in tlîe regions around 1076, 798 and 444 cm'̂  
which indicates further reaction of the silyi- azide with the WNCIg 
tetramer in (B) relative to (A) 



www.manaraa.com

B.7S16 

350 250 600 550 500 

8.428 

*00 
VRVENUHBERS CM-1 

(50 

Figure 11-4. Far IR spectra (Nujol) of 2A (A) and 2A' (B). A 
significant difference in the two spectra is the lack of 
a W-N stretching mode at ca. 450 cm"^ in (A) relative 
to (B). This indicates that (B) has the azide anion 
bound to the tungsten whereas it is likely that in (A), 
TMSA is bound as a ligand to the WNCIg tetramer in 
the trans position to the W-N multiple bond 
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Figure 11-5. X-ray diffraction data for WN(Ng)Clx (2A') from the reaction of WNCIg and 
trimethylsilylazide in DCE. The bragg diffraction does not correspond to the starting 
material, WNCI3 
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Figure 11-6. Mass spectra correlation with the thermolysis of 2A' 
in dynamic vacuum. The ion currents correspond to 
molecular weights of 28 (A), 36 (B) and 38 (C) for 
Ng, H^®CI and H^^CI respectively. Ng and CI 
account for most of the total ion current (D) although 
DCE and trimethylsilyl fragments were also present 
but not shown 
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The pyridine was removed from the solid under reduced pressure. In order to 

break the oil formed when the pyridine was distilled and to increase the 

refluxing temperature for the reaction, 30 - 40 mL of chlorobenzene (CB) were 

added to the solution when the pyridine volume was reduced to 15 ml. 

l\/1egSiNg (0.281 mL, 2.13 mm) was added, by syringe, to the 

pyridine/chlorobenzene/WNCIg mixture at room temperature. As the TMSA was 

added, the solution did not bubble as it does when WCIg was reacted with the 

same reagent, but the solution did change from rose-red to violet upon TMSA 

addition. The reactants were mixed at ambient temperature for 12 hours, then 

the reaction mixture was heated to refluxing chlorobenzene temperature 

(130°C) for ca. 20 hours. The higher temperature was used in an effort to 

decompose the tungsten azido compound identified as 2A and 2A'. Elemental 

analyses were not available for this material but the IR spectra (see Fig. 11-7, 8) 

of 2B show peaks at 1020 and 311 cm'̂  corresponding to the stretching 

modes of the W-N multiple bond and the W-CI vibration, respectively. The IR 

asymmetric stretching mode of the azide group in the 2000 - 2100 cm"^ region 

was not observed for this compound. 

WNCIg + (CHg)gSiNg -<butyronltrlle>-> (2C, 2C'). Approximately 40 

mL of butyronitrile was vacuum transferred onto WNCIg (535 g, .176 m mol) and 

allowed to warm to room temperature. Trimethylsilylazide (0.231 mL, 0.176 

mmol) was added, by syringe, to the mixing solution of WNCIg. Immediately 
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Figure 11-7. Mid IR spectra (Nujol) of the products obtained from the reaction 
of WNCI3 and TMSA in DCE (A), in pyridine/chlorobenzene (B) 
and butyronitrile (C). Although spectrum (C) does not cover the 
same range as (A) and (C), there is no additional functionality, 
besides Nujol, outside of the reported range. The azide peak at 
2129 cm*^ does not appear in either (B) nor (C), indicating 
decomposition of the azide 
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Figure 11-8. Far IR spectra (Nujol) of the products obtained from the reaction of 
WNCI3 and TMSA in DCE (A), in pyridine/chlorobenzene (B) and 
butyronitrile (C). The peaks In (A) centered at 450 and 380 cm" 
correspond to the W-N and W-CI stretching frequencies, 
respectively while the peaks at 315 and 311 cm'̂  in spectra (B) 
and (C) represent the stretching modes of the W-CI bonds 
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after the addition of TMSA to the butyronitriie/WNCIg yellow - red solution, the 

reaction mixture became deeply red colored, similar to that observed in (28). 

The reaction was conducted under refluxing conditions for four days and 

additionally at room temperature for two days. The material was isolated by 

filtering the insoluble portion of the product (2C) from the soluble fraction (2C'). 

The yield of the insoluble product was 496 mg. The solid was black, indicating 

a possible reduction of the metal. Anal. Found for 2C: W, 42.3; CI, 13.35; N, 

12.5; C, 24. IR (Nujol, cm""") for 2C: 1680 m, 966 m, 315 s (\)(W-CI)). No 

asymmetric stretching mode was found for azide in the range 2000 - 2100 cm'̂  

nor was there a C=N stretching frequency around 2200 cm"^ corresponding to 

the butyronitrile. The thermolytic decomposition was monitored by mass 

spectroscopy and is summarized in Figure 11-9. A significant amount of the ion 

current in the mass spectrometer was due to acetonitrile, which is a very stable 

ion fragment of butyronitrile, indicating conclusively that butyronitrile was 

contained in compound 2C, even though the C^N stretch was invisible in the IR 

spectrum. Additional mass fragments were associated with DCE and 

trimethylsilyl ions. 

WNCI3 + LI3N --<DCE>—> (3A). Owing to a report of the exothermic, 

almost explosive nature of this reaction^® producing (3A), LigN (1 lOmg, 3.21 

mmol) was loaded in a clean, dry 1 dram glass vial and placed in a 100 ml 

reaction flask containing WNCI3 (976 mg, 3.21 mmol) in order to avoid mixing 
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Figure 11-9. Mass spectra correlation with the thermolysis of 3A in dynamic vacuum. The ion 
currents corresponding to molecular weights of 28 (A), 36 (B) and 41 (C) for Ng, 
H CI, H CI and CgHgN ions, respectively. Ng and CI account for only a small part 
of the total ion current (D), whereas, the fragments of butyronitrile (including 
acetonitrile (CgHgN) account for the majority of the current 
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the two components directly as solids (it has since been shown that this solid 

mixture is not highly reactive in the drybox). Forty mL of DCE were vacuum 

transferred to the reaction flask containing WNCI3 and LigN. The reaction was 

allowed to mix at ambient temperature for four days, under vacuum. The 

mixture changed color from orange to green to brown over the course of four 

days. The reaction proceeded at a slow rate because of the relative insolubility 

of both reactants in DCE. The product was insoluble in DCE and the filtrate 

was colorless. The solid was isolated on a filter frit and maintained under 

dynamic vacuum for 12 hours before recovery of ca. 1.0 g of (3A) in the dry 

box. The material was formulated as the addition product, LigWNgClg. A 

tungsten analysis was attempted on this material using the standard 

combustion gravimetric analysis but as the samples were placed into the 

furnance, flames were produced within the crucibles. IR (Nujol, cm"^) for (3A): 

1043 s {v{\N=N)), 330 (\)(W-CI)). In the IR spectrum there are no other 

assignable modes, aside from the Nujol peaks (see Fig 11-10, 11). The X-ray 

powder data for (3A) indicate a slightly crystalline compound (see Fig. 11-12). 

The diffraction peaks do not correspond to LigN, WNCI3 or LiCI. 

WNCI3 + LigN —<pyridine>~> (3B, 3B'). The LigN (119 mg, 3.42 mmol) 

and WNCIg (1.040 g, 3.42 mmol) were brought together in a 100 mL reaction 

flask as described for 3A. The pyridine was vacuum transferred onto the two 

reactants and maintained at -25 °C while the two components were initially 
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SSII 3lfl Sil 

Figure 11-10. Mid infrared spectra (Nujol) of the product formed when WNCI3 
and LigN were reacted in DCE (A), in pyridine (B) and in 
butyronitriie (C) corresponding to 3A, 3B and 3C respectively. 
The peak(s) in the range of 1100 to 1000 cm correspond to 
the W-N multiple bond frequencies. In the case of (B), pyridine 
peaks are superimposed on the W-N mode(s) 
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Figure 11-11. Far infrared spectra (Nujol) of the product formed when WNCig 
and LigN were reacted in DCE (A), in pyridine (B) and in 
butyronitrile (C) corresponding to 3A, 3B and 3C respectively. 
The peaks at 338 cm" correspond to the stretching modes of 
W-CI, while the bands at 416 and 250 in (B) and (C) 
respectively were assigned to a pyridine deformation mode for 
pyridine and 'd(W-N) for butyronitrile, respectively 
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Figure 11-12. A comparison of the X-ray powder data for 3A, 3B and 3C 
corresponding to (A), (B) and (C) respectively. In each 
spectrum, the peaks are assigned to new compounds. Peaks 
corresponding to the starting reagents, WNCIg and LigN are 
not seen nor is LiCI which is a likely metathesis product 
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mixed to avoid a vigorous reaction, which did not occur. After two days of 

mixing at room temperature, under reduced pressure, the purple solution was 

filtered, which resulted in most of the material (1.6 g, 80%) passing through the 

frit as a soluble compound (3B) while 20% (0.4 g) of the material was isolated 

on the frit (SB'). The pyridine was distilled from the product, resulting in the 

formation of an oil for 38. DCE transferred onto the pyridine oil, resulted in 

ready precipitation of the solid, which allowed dry powders to be isolated for 

both SB and SB'. The difference between reactant and product mass was 

0.841 g, which corresponds exactly to the mass of two moles of pyridine per 

mole of tungsten. A formulation of LigWN2Clg"2py is consistent with this 

observation. The tungsten combustion analysis for SB' was not completed due 

to the presence of lithium, but the chloride composition was found to be 21.39% 

compared with the theoretical chloride percentage of 21.39%. IR (Nujol, cm'̂ ) 

for 28': See Fig. 11-10, 11. SB and SB' have the same X-ray powder pattern 

(see Fig. 11-12). The bragg peaks cannot be assigned to a starting reactant or 

lithium chloride (a probable metathesis product). 

WNCIg + LigN —<butyronitrile>-> (SC). WNCI3 (1.026 g, 3.37 mmol) 

and LigN (114 mg, 3.37 mmol) were reacted under conditions that were the 

same as those used in the formation of SB and SB'. Over the two day reaction 

period, the mixture color changed from red to yellow-brown. The yellow-brown 

solid was isolated in two fractions; (SC), insoluble product isolated on the 



www.manaraa.com

62 

ceramic frit (1.45 g) and 0.04 grams of product isolated in the receiver flask that 

was not characterized further. Based on the difference in reactant and product 

mass, the formulation for 3C was LigWNgClg'I.S PrC=N. IR (Nujol, cm'̂ ) for 

(3C): 2185 ms (v(C=N)), 1637 w, 1541 m, 1072 and 1022 m (\){W=N)), 800 m, 

338 s (-«(W-CI)), 250 s (\)(W-N)). The X-ray spectrum for 3C is shown in Figure 

11-12. In agreement with 3A and 3B, the X-ray powder diffraction data do not 

correspond to either of the two reactants or LiCI. 

WNCIg'3(CgHgN) + H2O —<pyridine>—> (4A, 48). In one of the many 

attempts to grow single crystals of the pyridine adduct, WNCIg-Spy, 

approximately 20 mg of WNCI3 was placed in a test tube with 10 mL of pyridine 

and covered with a rubber septum. The test tube was in the lab environment 

for a period of 2.5 yearsi All the pyridine had diffused through the septum by 

this time and red cubic crystals (4A) surrounded by amorphous yellow material 

were identified in the tube in addition to blue-green laminar crystals (48), In 

attempts to reproduce the result, diffracting blue crystals (48) have been grown 

by inserting a small needle in the septum covering the WNCIg/pyridine filled test 

tube and letting it sit for 2 weeks. The needle is used to facilitate the exchange 

of pyridine with Og/water in the atmosphere. Single crystals of 4A were 

isolated for SEM-EDS analysis and shown to contain tungsten, chloride and 

oxygen. A quantitative determination was not possible due to the morphology 

of the crystals. IR (Nujol, cm'̂ ) for (4A): 1734 mw, 1653 mw, 1084 m 
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(u(W=N)), 712, 638, 584 s {\){W-0)), 442 s, 385 ms (\)(W-CI)). 

A single crystal X-ray data set was collected on the Siemans P4 rotating anode 

single crystal diffractometer for (4A). The crystal was found to be cubic and 

refinement was attempted in the space group l?3m with a = 13.421(2). There 

appears to be significant disorder in the system which has severely hampered 

the refinement. Currently the R factor is 0.2055. The largest Fourier peaks 

were found at 0, 0, 0 and 0, 0, 0.17 and assigned to tungsten based on their 

relative weights. The separation between these two positions is 2.2 À. Since 

this is unreasonable for a W-W bond length, each position was refined with a 

0.5 occupancy for W. The average structure appears to consist of an 

octahedron of tungsten atoms centered around the origin and tungsten atom at 

0,0,0 surrounded by an octahedron of nonmetal atoms. There are Fourier peaks 

corresponding to edge-bridging and terminal positions of the tungsten 

octahedron (see Fig. 11-13). Rotation photos of the blue laminar crystal (4B) 

showed intense diffraction but a single crystal data set has not been collected 

to date. 
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Figure 11-13. Ball and stick representation showing the average structure of 
cubic 4A produced from the gradual hydrolysis of WNCI3 in 
pyridine. The positions for W1 and W2 are only 1/2 occupied. 
d(WI-WI) = 3.234(12), d{W1-W2) = 2.287(8), d(W1-0) = 2.04(9). 
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Physical Measurements 

Infrared spectra were obtained from a IBM IR/90 or a Bomem MB-Series 

Fourier Transform infrared spectrometer. The samples were prepared as Nujol 

mulls and pressed between Csl plates. The spectra were recorded separately 

for the mid-IR (4000-600 cm'̂ ) and far IR (600-200 cm"^) in the case of the 

IBM spectrometer and from 4000 to 185 cm'̂  with the Bomem spectrometer. A 

Cambridge S-200 Scanning Electron Microscope (SEM) coupled to a Tracor 

Northern Micro Z II Energy Dispersive Spectrometer (EDS) with a Beryllium or 

ultra-thin carbon window was used to determine relative tungsten and chloride 

concentrations. A qualitative determination of the nitrogen composition could 

be obtained when the ultra-thin window was used. The X-ray diffraction data 

for finely ground powders of 1A - 3C were obtained from a Philips ADP3520 

diffractometer using Cu Koj and Kocg radiation. The samples were analyzed on 

zero-background quartz plates using the Philips environment cell reported in 

Section I of this work. 
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RESULTS AND DISCUSSION 

Synthesis and Characterization 

The coordination around W in WNCig is pseudo octahedral with the 

position trans to the W-N multiple bond occupied by a chloride from an adjacent 

tetrameric unit, it is in this trans site that coordination by other ligands can 

readily occur by replacing the weakly bound chloride atom. This coordination 

should be considered to be the first step of a reaction involving a coordinating 

reactant. The following scheme of reactions summarizes the reactions in this 

work: 

i lA) mcl^ + SNH^i l )  ^ + ZNH^Cl 

(IB) mcl,{py),^3NH,{g) Cl , iNH,)NH,C1 

(2A0 mcl j  + Me.SiN. JICE zohouzs, mnN,)Cl, + Me,SiCl 
"5 i J 83® C, àdays ^ 

{3A) mCl.  4- LUN "°5' Li.WN^Cl^ ^ ^ Aaays j ^ , 

(3B) WNCl^ + LijN Li^WN^Cl^ (py) 2 

(3C) WNCl^ + LijN butyzoni t r i le ipzCN) 2 
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1A,1B. The ammonolysis in liquid ammonia of WNCI3 (1A), as a first 

step to metathetically replacing chloride with amide, succeeded in removing two 

of the three chlorides, which is consistent with earlier work^®. The 

ammonolyses of many metal chlorides show a similar retention of chloride. The 

ammonolysis of VCI4 produces VCI(NH2)g and VCI(NH2)2^®- M0CI5 

ammonolyzes to yield MoCl4{NH2)2 and MoCI(NH){NH2)^^. For WFg, reaction 

with liquid ammonia does not result in ammonolysis but rather reduces the 

tungsten to +4 with the formula WF4'4NHg^®. Part of the difficulty in completely 

removing the chloride is the insolubility of the ammonolyzed metal halides in 

ammonia. In the reaction yielding 1B, gaseous ammonia was added to a 

pyridine/WNCIg solution, to induce gradual ammonolysis and replace all CI 

atoms in WNCI3. Nine moles of ammonia gas were added to replace 

completely the chloride and pyridine ligands. In agreement with the unobserved 

pyridine modes and observed ammonia modes in the IR for IB (see Fig 11-2), 

and the ammonium chloride observed in the X-ray powder diffraction, 1B 

represents partially ammonolyzed WNCI3 where ammonia replaced all three 

pyridine ligands and reacted with the material to remove one of the chloride 

atoms. A chloride or tungsten analysis was not useful, due to the ammonium 

chloride present in 1B. It was discovered that even when the product 1A is 

reacted with ammonia at 380 °C, the chloride is not completely removed^ 

2A-2C. When TMSA is reacted with WNCI3, product is dependent 
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on the solvent used. 2A' represents the metathetic replacement of CI with Ng 

in PWNCIg. In the reaction between WCIg and MegSiNg, the azide 

intermediate, W(Ng)Clg, is formed and subsequently decomposes to WNCIg in 

an intramolecular oxidation-reduction reaction not involving a change in 

tungsten oxidation state. The detection of Ng"*" and HCI^ is observed as this 

reaction proceeds. CI"*" probably abstracts protons from any hydrocarbon 

present, resulting in HCI^ detection. When 2A' is decomposed thermally in 

dynamic vacuum, the mass spectra of the volatile components evolved in this 

heating process show a large amount of (mass 28) and HCI"*" (mass 36, 38) 

as seen in Figure 11-6; in fact, and HCI"*" account for most of the ion current 

in the mass spectra for this decomposition. The azide appears to decompose 

(as evidenced by the nitrogen evolution in the mass spectra) before the HCr*" is 

detected. This indicates that the azide is undergoing a net oxidation to 

dinitrogen while the tungsten is probably reduced in the process. One would 

expect a superposition of the nitrogen and HCI"*" peaks in Figure 11-6 if the azide 

and chloride from WN(Ng)Cl2 undenwent reduction and oxidation respectively in 

a concerted manner, independent of the metal, as in the decomposition of 

WNgClg to WNCIg. It appears that WNg cannot be produced by the thermal 

decomposition of 2A' in vacuo. The photolytic and thermal decomposition in 

inert or reactive gas atmospheres have yet to be investigated. By altering the 

atmosphere, the pathway of decomposition can also vary, which may allow for 
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the decomposition of the azide without reduction of the metal. 

Both 2B and 2C, which were produced in pyridine/chlorobenzene and 

butyronitrlle respectively, do not contain the azide ligand (based on the iR 

spectra. Fig. 11-7,8). In the IR spectrum of 28, aside from the pyridine modes, 

there are two peaks corresponding to v(W=N) and 'o(W-CI) at 1080/1020 and 

31 Icm,'̂  respectively. For 2C, based on the C, N, W and CI percentages of 

24, 12.5, 42.0 and 13.35 respectively, the empirical formula is 

WCIi gNg 4(PrCN)2 2- The CsN stretching mode was absent in the IR spectrum 

for 2C but when the sample was decomposed thermally, butyronitrlle and its ion 

fragments accounted for the majority of the total ion current (see Fig. 11-8) with 

Ng and HCI cations contributing about 1/4 of that produced by the nitrile. 

Masses 36 and 38 correspond to HCI for the two CI isotopes. Ion current due 

to the HCI is seen beyond 500 °C which indicates that the solid produced by 

heating 2C in vacuo is contaminated by CI. 

3A-3C. Lithium nitride was used in these reactions in attempts to initiate 

a simple metathetic substitution of N '̂ for 3 moles of CI" in WNCIg. The 

resulting products from the three reactions of lithium nitride and WNCIg in DCE, 

pyridine and butyronitrlle appear to represent addition compounds. The X-ray 

powder diffraction data for 3A-3C (Fig. 11-12) do not correspond to the reactants 

(LigN or WNCIg) or potential product (LiCI) from a metathetic reaction, but 

illustrate three separate phases of moderate crystallinity . In each compound. 
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the W-CI stretching frequencies have shifted from being centered at 385 cm'̂  in 

WNCI3 to 330-340 cm'̂ . This shift is consistent with the shifts seen in anion 

formation from neutral compounds. The IR spectrum for 3A is very simple, 

being comprised of two modes related to the tungsten compound. In WNCI3 

the IR stretching mode of triply bound W-N is centered at 1082 cm'̂  while the 

corresponding mode for 3A is found at 1043 cm"^ with a shoulder at 

approximately 1080 cm"^. The possibility of a WNgClg®' anion, where tungsten 

is coordinated by two multiply bound nitrogen ligands must be considered 

based on the molecular formula and the perturbation of the W-N stretching 

frequency. In the far IR spectrum of 3C, there are two modes at 338 and 250 

cm'̂ . The peak at 338 corresponds to W-CI stretching mode while the other 

band is difficult to assign with certainty. Because of the variation in M-N 

assignments for nitrile compounds, 250 cm"^ is well within the accepted range 

for M-N{nitrile) stretching frequencies^®. 
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CONCLUSION 

The ammonolyses of WNCIg In liquid ammonia or pyridine have yielded 

materials, whose compositions correspond to WN(NH2)2CI(NHg)2 and 

WN(NH2)Cl2{NHg)2, respectively. The reactions of WNCIg in non-coordinating 

and coordinating solvents with nitriding reactants, such as ammonia, TMSA and 

lithium nitride have not yielded higher binary tungsten nitrides, under the 

conditions specified. The thermolytic decomposition of WNN3CI2 (2A') resulted 

in azide decomposition at about 150 °C, followed by chloride evolution at 234 

°C. The thermal decomposition of WN3CI5 has been shown to evolve Ng and 

CIg in an intramolecular pathway in which the metal oxidation state remains 

constant. Heating WNNgClglDCE),^ in vacuo, results in Ng and CI decomposing 

at different temperatures. This indicates that the decomposition of WNCIg does 

not follow the same pathway as the WNgClg decomposition. The dinitrogen 

anion, WNgClg^" has been identified by IR and compositional analyses. It was 

formed from the reaction of WNCIg and LigN in different solvents. 
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SECTION III. SYNTHESIS, NEUTRON POWDER DATA REFINEMENT, 

AMMONIUM CATION ORIENTATION AND PROPERTIES 

OF HEXAGONAL AMMONIUM TUNGSTEN BRONZES 

(NH4)xW03.y(NH)y 
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INTRODUCTION 

Ternary oxides with the general formula M^^WOg have been tenned 

tungsten bronzes because of their similarity in metallic luster and electrical 

properties to copper-tin bronze. The tungsten oxide bronzes have been shown 

to form in triclinic, monoclinic, orthorhombic, tetragonal I, tetragonal II, 

hexagonal and cubic crystallographic systems. As the value of x is increased 

for a given M, the structure of the tungsten bronze changes to higher 

symmetry^ Some interesting properties are associated with these 

compounds. '̂® The hexagonal bronzes are superconducting (Tc less than 8 

K)4, chemically inert and metallic® while the lower symmetry, low-x structures, 

such as tetragonal II and orthorhombic, are always semiconductors. The ionic 

mobility of some cations in these phases has lead to their use as non-polarizing 

electrodes in solid electrolytes.® 

In the hexagonal bronze structure, hexagonal and trigonal channels are 

formed parallel to the c axis by interconnected tungsten-oxygen octahedra (Fig 

III-1). The cations are located in the center of the hexagonal channels. Most 

commonly, the mono-valent cations occupy the hexagonal chambers in a range 

of 0.16< X <0.33®"® (0.33 is the maximum theoretical occupancy of M"*" in the 

hexagonal channels if it is assumed that one hexagonal cavity contains only 

one cation) although a value of x as high as 0.45 was reported by a group 
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Figure View of the extended bonding arrangement In the hexagonal tungsten bronze 
Mj^WOq. The corner sharing tungsten-oxygen octahedra form hexagonal (A) and 
trigonal (B) channels parallel to the c axis. The monovalent cations occupy the 
hexagonal channels and are generally coplanar with the apical oxygens of the 
tungsten-oxygen octahedra 
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investigating differing routes to the ammonium tungsten bronze.® A recent 

paper^° on hydrothermal synthesis of a fully oxidized hexagonal tungsten oxide 

reported that sodium resides in the constricted hexagonal window formed by 

the basal oxygens of the tungsten-oxygen octahedra. The conduction band of 

the tungsten bronze is formed by the jr-bonding between the tungsten 5d (tgg) 

and the oxygen 2p orbitals^ '̂̂ ^. Variation of the electron density at the Fermi 

level by modulating cation type and stoichiometry account for most of the 

attempts to alter the electronic properties of the tungsten oxide bronzes. There 

has been no successful attempt to alter the anionic tungsten-oxygen framework 

by isoelectronic substitution for oxygen. Changes in the non-metal identity 

would also change the energy level of the p orbitals and consequently should 

alter the density of states at the Fermi level of the bronze. 

The conventional syntheses of ammonium tungsten bronze utilize 

oxygenated reactants, thereby increasing the probability of a tungsten-oxygen 

anionic lattice. In this study the hexagonal ammonium tungsten bronze has 

been made from a new synthetic route with nitrogenated reactants which 

increases the probability of isoelectronic nitrogen substitution (in the form of 

imide-NH '̂) for oxygen in the anionic lattice. A slight excess of nitrogen was 

discovered in the ammonium bronze by elemental analysis and XPS spectra 

identified a small amount of imido-like nitrogen in the bronze phase. Because 

of the small difference in X-ray scattering length between oxygen and nitrogen, 
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a neutron powder diffraction study (the relative neutron scattering lengths of the 

atoms involved are: N = 0.93, O = 0.58, W = 0.48 and D = 0.67) was 

undertaken to determine the location of nitrogen, if any, in the anionic 

hexagonal lattice and determine the location and orientation of the ammonium 

cation in the hexagonal tunnels. 

A report of a fully substituted imido bronze with the formula 

(NH^)xW(NH)g has been given recently^ In contrast to this report of an imido 

bronze, the results obtained from this study have shown that the imido ligand 

does not substitute to a significant degree in the oxide lattice of the ammonium 

bronze. 
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EXPERIMENTAL 

General Considerations 

The starting materials reported in this section are extremely reactive to 

air and water. Manipulations of air- and water-sensitive compounds were 

performed under inert atmosphere conditions using standard dry box, vacuum 

and Schlenk techniques. 

Materials 

Anhydrous ammonia (99.99% min) was obtained from Matheson Gas 

Products and was subsequently purified by dissolving sodium metal in the liquid 

ammonia to eliminate oxygen and water. The ammonia was distilled from the 

sodium for most of the reactions. Deuterated ammonia (NDg) was obtained 

from Cambridge Isotope Laboratories (99% deuterated) and purified with 

sodium metal. 100 g. of Puratonic grade (99.999%) ammonium tungsten oxide 

((NH^)i0^12^41 'SHgO) was obtained from Johnson Matthey Chem. Ltd. and 

used as received. WNCIg was prepared according to the synthesis reported in 

Section I of this work. WCIg was obtained from Pressure Chemical and further 

purified by fractional sublimation to eliminate tungsten oxychloride impurities. 
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W0g'2H20 was prepared in this laboratory by a published method/^ 

Analytical Procedures 

Potentiometric titrations with a standardized silver nitrate solution were 

used to determine total chloride content. Tungsten was determined 

gravimetrically, by conversion to tungsten trioxide. A LECO Model UO-14SP N 

Determinator (an automated Dumas combustion instrument) and Kjeldahl 

analyses were used for determination of total nitrogen^®. In the Kjeldahl 

analysis, tungsten bronze samples were digested in boiling sulfuric acid for 

periods of 1-2 days. The relatively long digestion period (typical digestions of 

organic materials range from 30 minutes to two hours) was required to insure 

that the bronze completely decomposed to tungsten trioxide and liberated all of 

the nitrogen in the system. After the materials were fully digested, the 

appropriate amount of a sodium or potassium hydroxide solution was added to 

raise the pH above 7. The solution was then heated to boiling and the 

ammonia was distilled into a beaker containing a 5% aqueous solution of boric 

acid which was then titrated with .01 M sulfuric acid. Standards of 

((NH^)i gW., 'SHgO) were evaluated before and after the analyses and in 

each case the N percentages were those expected within the experimental 

error associated with the method. 
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Synthesis 

Preparation of a tungsten imide (W(NH)2 gClj^) (1A-1C). Two 

preparative schemes were employed to produce the tungsten imide. 

Scheme I. In the first preparation, WN(NH2)2CI(NHg)2 (reported in 

section II) was placed in a boat, made of either tungsten or pyrex, and inserted 

in a quartz reaction tube which was placed in a tube or split fumace and 

connected directly to a tank of anhydrous ammonia. The ammonia was 

admitted into the reaction tube at a rate not exceeding 10 cm^/min and the 

temperature was increased to 380-400 °C over an hour period. The elevated 

temperature ammonolysis was allowed to continue for 12-24 hours depending 

on the experiment. Finely divided white powder was carried along in the 

ammonia stream which was subsequently identified as ammonium chloride by 

x-ray diffraction. The resulting product ranged in color from black to brown. 

The material was found to be hygroscopic and was isolated and stored in a 

drybox prior to characterization. 

In order to prepare samples for a neutron diffraction experiment, a 

modified scheme was developed in which the amount of deuterated ammonia 

used in the preparation was minimized. 

Scheme II: WN(ND)2CI(NDg)2 was prepared as outlined in section II of 

this dissertation for the hydrogen analog, except deuterated ammonia was 
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substituted for ammonia. The deuterated ammonia was also dried over sodium 

metal and frozen with liquid nitrogen. Figure III-2 gives the overall schematic 

for the imide preparation. Heating and ammonolysis was performed according 

to the following sequence: 

1). WN(ND2)2CI'NDg was placed in a reaction tube and placed in a 
tube furnace at ambient temperature. 

2). The sample compartment and the vacuum line were evacuated. 
3). The system was backfilled with gaseous ammonia by allowing the 

solid ammonia to warm in a 2-propanol slush bath. 
4). The sample was heated to 100 °C. 
5). The sample was heated for two hours at 100 °C. 
6). Repeat steps 2 and 3. 
7). The sample was then heated to 200 °C. 
8). The sample was heated for two hours at 200 °C. 
9). Repeat steps 2 and 3. 
10). The sample was then heated to 300 °C and reacted for 1/2 hour. 
11). Then it was heated to 325 °C and reacted for 1 hour. 
12). The system was evacuated at 325 °C to sublime ammonium 

chloride. 
13). Then the sample was heated at 325 °C for 2 hours under static 

vacuum. 
14). The sample was finally cooled to ambient temperature. 

When the material was initially heated to 100 °C, a large quantity of gas 

was evolved. The evolution of gas did not occur to any significant degree after 

the material was heated beyond 100 °C. Ammonium chloride was produced 

in large quantities in this reaction and was isolated from the sample by breaking 

the reaction tube at the constriction. 

Three samples of WN(ND2)2CI'(NDg)2 were reacted according to 
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Figure III-2. Schematic of reactor for elevated temperature ammonolysis of 
WN(ND2)2CI'(NDg)2 which was used as a precursor to crystalline 
ATB (SE). The material was heated in increments of 100 °C to 
300 °C. After each new temperature level was obtained, the 
system was evacuated and backfilled with dry deuterated 
ammonia 
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scheme II to produce products 1A, 1B and 1C. The starting amounts for each 

reaction were 11.00 g., 10.21 g. and 11.0 g., with yields of 5.2 g., 4.3 g. and 

5.2 g. respectively for 1A, IB and 1C. The X-ray powder diffraction patterns for 

1A, IB and 1C are shown in Figure III-3. 

Preparation of (NH^)^WOg (2A) from nitrogen reactants. Reaction of 

the tungsten imide (W(NH)2 gCy with varying amounts of water yields the ATB. 

The ATB in this study are synthesized according to the following general 

scheme; 

1). WCIg + MegSiNg W(N)Cl3 + Ng + CIg 

2). W(N)Cl3 + xsNH3(I) W(N)(NH2)2CI-2NH3 + 2NH4CI 

3). W(N)(NH2)2CI-2NH3 W(NH)2.5CI^ + (1-x)NH4Ci + 

4). W(NH)2.5CIx + SHgO (NH4)o.27W03_y(NH)y + xNH^CI + NH3 

In the final step, the imide was added to a pyrex reaction tube which was 

connected to a vacuum line and evacuated. The desired amount of water was 

syringed into an adjacent glass tube which was being purged with argon. After 

the water was added, the valve to the water tube was closed and the water was 

frozen with liquid nitrogen and then evacuated. The water was then vacuum 

transferred to the imido material, frozen with liquid nitrogen and backfilled with 
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Figure III-3. X-ray powder diffraction of the products of three separate 
elevated temperature ammonolyses, 1A, 1B and 1C conducted 
according to Scheme II. The narrow peaks in the spectra are due 
to ammonium chloride and the broad peaks are due to the 
amorphous tungsten imide 
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approximately 2/3 atmosphere of ammonia. The tube containing the imide, 

water and ammonia was then melt sealed and placed in a tube furnace at 380-

400 °C for three to ten days, depending upon the experiment. If less than 2 

moles ofwater is added to the imide, the material does not convert fully to the 

crystalline bronze. The X-ray diffraction patterns in Figure III-4 illustrate the 

dramatic influence of water on crystalline bronze formation. The imide has been 

shown to be hygroscopic and can be left in air for several days and it absorbs 

enough water to convert the imide to the bronze when heated in a sealed pyrex 

tube for several days in static ammonia at 380 °C. 

Conventional preparation of (NH^)^W03 (2B). Ammonium 

paratungstate (APT) with the formula 'SHgO was reacted with 

ammonia at 380 °C in two separate experiments under flowing and static 

ammonia. In the flowing ammonia reaction the APT was loaded in a pyrex boat 

and placed in a reaction tube and allowed to react for 18 hours (2B). The static 

reaction was performed as recorded in Scheme II in the preparation of a 

tungsten imide (W(NH)2 gCy in this section. 

New preparation of (NH^)^WOg (2C) with an oxygenated reactant. 

When W0g'2H20 was allowed to react with flowing ammonia at 380 °C for 17 

hours a material was produced that corresponded to the hexagonal tungsten 

bronze phase with small particle size (see Fig. 111-5). Comparative X-ray 

powder data for 2A-2C are given in Figure III-6. 
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Figure III-4. X-ray powder diffraction of the amorphous tungsten imide made 
according to Scheme I (A) and the hexagonal bronze {2A) formed 
by the reaction laetween amorphous tungsten imide and 3 moles 
of water per mole of tungsten at 380 °C for 3 days under reduced 
ammonia pressure (B) 
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Figure III-5. X-ray powder diffraction of W0g'2H20 (A), the product of the 
reaction between W0g'2H20 and flowing ammonia at 380 °C (B) 
and 2A - crystalline hexagonal ammonium tungsten bronze (C) 
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Figure III-6. X-ray powder diffraction of hexagonal bronze 2A made by the 
reaction of tungsten Imide with 3 moles of water at 380 °C (A), 2B 
made by the reaction of ammonium paratungstate and ammonia 
at 380 °C (B) and 2C made by a reaction between W0g'2H20 
and ammonia, at 380 °C (C) 



www.manaraa.com

90 

Preparation of deuterated ATB samples for neutron powder 

diffraction studies. Six samples were taken to Los Alamos National 

Laboratories for neutrondiffraction studies. The tungsten imido compounds, 1A-

1C, were reacted with differing amounts of DgO to yield compounds 3A-3E as 

described in the preparation of 2A. The water was added on the basis of a 

water to metal mole ratio e.g., 0.5 moles of water added to a compound means 

0.5 moles of water per 1 mole of metal in W(NH)2 gCI^. 3A was obtained by 

the reaction of 1A and 0.5 moles of DgO, 3B-3D were obtained by the reaction 

of 1B and 1.5 moles of water(3B was doped with 25 % NH^CI, 3C was doped 

with 50 % NH4CI and 3D was doped with 75 % NH4CI) and 3E was obtained by 

the reaction of 1C and 3.0 moles of water. 3E was annealed twice in sealed 

pyrex tubes at 380 °C for 4-5 days to induce further crystallization and sublime 

ammonium chloride, produced by the hydrolysis, from the bronze (see Fig. ill-7 

and Fig. III-8 for the neutron powder diffraction spectra for 3A, 3B and 3E, 3F 

respectively). 3F was prepared according to scheme II but ammonium 

paratungstate was used instead of WN(NH2)2CI'NHg as the starting tungsten 

reagent. Based on elemental analyses of 3E, the weight percent of N is 2.60 

and that of CI (from NH4CI) is 1.40. The nitrogen percentage in the tungsten 

bronze is 2.05 after the nitrogen that arises from ammonium chloride is taken 

into account. In the formulation (ND4)^WOg_y(NH)y, if x = 0.25 then y = 0.09, 

and if X = 0.28 then y = 0.06. 
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Figure III-7. Neutron powder diffraction of tungsten imido/bronze 
compounds 3A (A) and 3B (B) prepared by tlie addition of 0.5 and 
1.5 moles of DgO to 1A and 18 respectively. The narrow peaks 
in (b) are due to ammonium chloride. The spectra are scaled 
independently and illustrate the increase in crystallinity resulting 
from the addition of increasing amounts of water to the imide 
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Figure III-8. Neutron powder diffraction of crystalline hexagonal tungsten 
bronze compounds 3E and 3F prepared from the elevated 
temperature hydrolysis of tungsten imide (A) and elevated 
temperature ammonolysis of ammonium paratungstate (B) 
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Physical Measurements 

A Cambridge S-200 Scanning Electron Microscope (SEM) coupled to a 

Tracor Northern Micro Z II Energy Dispersive Spectrometer (EDS) with a 

Beryllium or ultra-thin carbon window was used to determine relative tungsten 

and chloride concentrations. A qualitative determination of the nitrogen 

composition could be obtained when the ultra-thin window was used. X-ray 

photoelectron spectra were obtained from a Perkin Elmer model 5500 Multi-

Technique system by James Anderegg at Ames Laboratory. Magic angle 

spinning and static solid state NMR spectra were obtained by Vinko Rutar in 

the Iowa State Instrument Services Group on a Bruker MSL-300 Solid State 

NMR spectrometer. Variable temperature magnetic susceptibility was 

measured on powdered samples with a Quantum Design Squid 

magnetosusceptometer. Variable temperature electrical resistivity was 

measured on square pellets of ATB which were annealed at 380 °C under 2/3 

atmosphere of ammonia for 6 days. The measurement was based on the Van 

der Pauw four-probe method'® using the system developed by the David 

Johnston group at Ames Laboratory. 
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X-ray Powder Diffraction Data 

The X-ray data for finely ground powders of 2A and 2B were obtained 

from a Scintag 6-0 powder diffractometer while X-ray data for powdered 2C 

were obtained from a Philips ADP3520 diffractometer using Cu KcL, and Kog 

radiation. The samples were analyzed on zero-background quartz plates 

(obtained from Gem Dugout^ which had been sandblasted using a square 

template to create a depression for the samples. 

Neutron Powder Diffraction Data 

Six deuterated samples of the ATB of varying degrees of crystallinity, 

3A-3F, were prepared and powder neutron diffraction data sets were collected 

on the hexagonal bronzes using the HIPD (High Intensity Powder 

Diffractometer) at the LANSCE facility of Los Alamos National Laboratory. 

LANSCE uses a proton accelerator and synchrotron to produce high-energy 

neutrons by bombardment of a tungsten target. The neutrons are moderated to 

lower energies before they are used for diffraction by a filter containing heavy 

water. The HIPD is equipped with 10 time-off-flight detectors at angles of ± 

153.4, ±90.0, ±39.8, ±14.0 

and ± 5 degrees. The time-of-flight data were collected on 4-5 gram samples 
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loaded into thin-walled quartz tubes at 300 K. 3A-3D and 3F were collected for 

2 hours each while data for 3E (representing the most crystalline ammonium 

bronze prepared from the tungsten imide) was collected for 12 hours. 

Rietveld Refinement 

The neutron data were fit to a hexagonal unit cell with lattice parameters: 

a = 7.3958(3), c = 7.5446(5). The high-resolution data obtained from the + 

153.4° bank for 3E were used in three separate Rietveld refinements. The 

diffractometer and Rietveld refinement procedures are found in Ref. 18-22. The 

first refinement covered the range from 0.3 À to 2.273 Â. It was discovered 

that the data contained a broad peak at low d spacing which was difficult to fit 

when the background parameters are obtained by direct refinement, therefore a 

radial distribution (RD) function was determined from the + 153.4° data obtained 

for 3A (the least crystalline sample) and selected coefficients of this RD 

function were used in the 12 variable background function for the refinement. 

The final result was a reasonable fit of the overall data (R^p = 0.034, Rp = 

0.025, = 3.728) but the Bragg residual based on Rĵ , was 0.214. The 

information for this report will not include the first refinement from 0.3 Â to 

2.273 Â but contains two refinements covering the d space range 1.0 Â - 3.33 

Â (to focus more on fitting the bragg intensities). The structural model used for 
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the Rietveld refinements was the hexagonal tungsten bronze of rubidium 

Rbg and refinements were made in the space groups PSg/mcm (no. 

193) and P6g22 (no. 182) for Rietveld refinements 1 and 2 (RR1 and RR2), 

respectively. Atomic parameters are reported in Table III-1 and Table III-2 for 

refinements 1 and 2 respectively, while pertinent experimental data for 

refinement 1 and 2 are given in Table III-3. Selected bond distances and 

angles for refinement 1 are given in Table III-4. Neutron difference spectra 

from refinement 1 and 2 are reported in Figure IH-9 and 111-10 respectively. 

Ammonium chloride was observed in the neutron diffraction data for 3E 

and was refined using the atomic parameters from reported crystallographic 

determinations of NH^CI.^^ The phase fraction variable for the ammonium 

chloride in 3E was refined to 0.18(7) but potentiometric chloride analyses 

determined a 2.26 % weight ratio. The ammonium cation in the hexagonal 

bronze channels was modeled as a rigid body in two orientations (Fig. 111-11). 

In model I, one N-D vector is parallel to the c axis and the other three 

deuterium atoms lie on planes bisecting the crystallographic mirror planes. The 

4 D atoms are disordered over 14 positions. Model II represents a precession 

of the cation about the c axis with the four D atoms disordered over 48 

positions. Model II can be generated from model I by rotating model I 30° 

about xS and then 30° about 3. The torsional angle about Tf was refined initially 

but the angle in those refinements increased to values over 3000 degrees and 
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Table III-1. Positional Parameters for (NH^)Q 28^^3 Refinement #1 
using Space Group PSg/mcm (no. 193) 

atom site X y z Occup. 

W 6g 0.4717(8) 0 0.25 .5(2) 1.0 

0(1) 6f 0.5 0 0 a  1.0 

0(2) 12j  0.4221(3) 0.2120(3) 0.25 1.6(2) 1.0 

N(1) 2b 0 0 0 a  0.844 

D(1) 241 -0.041(1) -0.080(3) -.115(2) 7.6 0.070 

D(2) 241 0.0939(8) -0.037(2) 0.0706(6) 7.6 0.070 

D(3) 241 0.0773(4) 0.1546(8) -0.026(3) 7.6 0.070 

D{4) 241 -0.1300(9) -0.37(2) 0.0706(6) 7.6 0.070 

^ 0(2) and N(1) refined anisotropically: 
0(2); U11 = 3.1; U22 = 0.6; U33 = 0.9; U12 = 0.3; U13 = 3.0; U23 = 0 
N(1): U11=5.1; U22 = 5.1; U33= 1.7; U12 = 2.6; U13 = 0; U23 = 0 
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Table III-2. Positional Parameters for (NH^)Q ggWOg from Refinement #2 
using Space Group P6g22 (no. 182) 

atom site X y 2 Occup. 

W 6g 0.4739(7) 0 0 1.4 1.0 

0(1) 6h 0.4989(7) -0.002(1) 0.25 1.7 1.0 

0(2) 12i 0.4214(3) 0.2116(7) 0.0177(4) 2.1 1.0 

N(1) 4e 0 0 0.234(3) 5.5 0.420 

D(1) 12! -0.0734(6) -0.147(1) -0.185(5) 10.0 0.21 

D(2) 12i 0.1224(9) 0.021(2) 0.309(2) 10.0 0.21 

D(3) 12i 0.052(1) 0.103(3) 0.132(2) 10.0 0.21 

D(4) 12i -0.1007(9) 0.022(2) 0.309(2) 10.0 0.21 
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Table III-3. Crystallographic and Experimental File Data for (ND^) ggWOg, 

Crystal system: 
Space group: 
Volume of cell; 
Form, units/cell: 
d(calcd): 
Diffractometer: 
No. of data points: 
No. of reflections: 
D space region: 

Hexagonal 
PGVmcm (n. 193) 
357.43 (3)Â3 
6 
6.616 g/cm^ 
HIPD 
3143 
105 
1.0 À < d < 3.3 Â 

Histogram Refinement 
Parameters 

Refinement 1. 
(P6g/mcm; no. 193) 

Refinement 2. 
(P6322; no. 182) 

a 7.3951(3) 7.3958(3) 

c 7.5448(4) 7.5446(5) 

Scale factor 7.6(4) 8.8(1) 

s w f  216(9) 190(8) 

Sig(2)= 16(2) 21(2) 

Cation angle (X) 30(1) 69(1) 

Absorption -0.047(5) -0.039(2) 

Ro' 0.0549 0.0536 

Rwo' 0.0386 0.0380 

X- 2.504 2.285 

Isotropic strain (a1 ) and particle size (a2) broadening of profile function. 

d p _ ^\^{obs) ^(cald)\ 
rip -

{obs) 
'wp Xw. V{obs) '(ca/c)] 

^W\l, {obs) ^{calc) 

i^(obs) ^{vai)) 

N(Qbs) = number of independent observations, = number of refined 
parameters, I = integrated Bragg intensities, w = weights. 
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Table III-4. Interatomic Bond Distances (Â) and Selected Angles for 
(ND4) ggWOg, from Refinement 1 

W(1) -0(1) 1.8976(6) 0(1) -W(1)- 0(1) 167.45(30) 

W(1) -0(2) 1.780(4) 0(1) - W(1) - 0(2) 94.06(9) 

W(1) -0(2) 2.061(5) 0(1) - W(1) - 0(2) 85.25(12) 

0(1) -N(1) 3.69757(16) 0(2) - W(1) - 0(2) 89.55(12) 

0(2) -N(1) 3.29262(11) 0(2) - W(1) - 0(2) 171.11(21) 

caused the refinements to diverge, indicating that the ammonium cation was 

spinning around the c axis. The angle about ^ (i.e, the angle between a N-D 

vector and the c axis in the TTb plane) was allowed to vary in the refinement and 

in each refinement the angle converged to values between 27 and 33 degrees 

from the c axis. 

There was no significant indication of reflections that violated extinction 

conditions of the c glide operation (hohl reflections absent), although there was 

a small peak corresponding to the (10T3) reflection (d = 2.296 Â), not 

accounted for in refinement 1. 
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Figure III-9, Plot of the neutron experimental data (+), calculated spectra (line 
through the experimental points) and the difference curve at the 
bottom of the graph for refinement 1 (P6^/mcm) of hexagonal 
ammonium bronze (3E) made from nitrogenated reactants 
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Figure 111-10. Plot of the neutron experimental data {+), calculated spectra 
(line through the experimental points) and the difference curve at 
the bottom of the graph for refinement 2 (P6g22) of the 
crystalline hexagonal ammonium bronze (3E) made from 
nitrogenated reactants 
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Figure 111-11. Model 1: Ortep drawing of ammonium cations in which the vertical N-D vector is 
parallel to c and the four D atoms are disordered over 14 positions. Model II: 
Ortep drawing of an ammonium cation model representing precession about the c 
axis at an angle of 30°. The four D atoms are disordered over 48 positions. Model 
II represents the best fit for the Rietveld refinement 
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RESULTS AND DISCUSSION 

Synthesis of ATB with Nitrogenated and Oxygenated Reactants 

The conversion of WNCI3 to crystalline ATB is illustrated in Figure 111-12. 

The initial low-temperature ammonolysis of W(N)Cl3 produces tungsten (VI) 

(see reaction 2). Subsequently, the tungsten is reduced to an average 

oxidation state of 5.72 (based on a 0.28 NH^ChW ratio) during the ammonolysis 

and hydrolysis at elevated temperatures (see reactions 3 and 4) to yield 

crystalline ATB. After the hydrolysis of the tungsten imide (reaction 3), the 

sealed reaction tubes explode when opened and evolve ammonia gas. Based 

on this, water appears to react metathetically with the imide in reaction 3 to 

form the oxide and liberate ammonia. This observation is consistent with the 

higher affinity of tungsten for oxygen relative to nitrogen. 

Based on both the conventional and this new synthetic approach to the 

ammonium bronze, it appears that four conditions are necessary for the 

production of the bronze. First, there must be a source of tungsten in an 

oxidation state near +6 due to the inherently reducing atmospheres used in the 

syntheses (NH3, HgO and Hg). Second, there must be a source of oxygen, 

either as part of the metal or a secondary reactant. Third, nitrogen must be 

present in the -3 oxidation state and converted ultimately to ammonium. 
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Figure 111-12. Illustration and reactions showing the conversion of WNCI3 (A) to (NH4) 28^03 (B). 
The bronze is shown with the model II cation occupying 0,0,0 positions within the 
hexagonal channels 
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Fourth, any compounds containing elements other than W, O or N, must be 

removable from the product, either by vaporization or washing and filtration 

technique. Preceding the synthesis of (2C), yellow WO3 (anhydrous) was 

reacted in flowing ammonia at 400 °C for 3 days and yielded, according to the 

X-ray powder pattern (Fig. 111-13), a blue tungsten oxide of unknown 

composition and structure. It has been shown that tungsten trioxide can be 

converted into the subnitride WgN '̂̂ . In contrast to these results, the dihydrate 

of WO3 was reacted in flowing ammonia to produce a product (2C) whose X-

ray powder spectrum matched the hexagonal bronze phase (Fig. 111-5) although 

the peaks were much broader due to particle size broadening. Subsequent 

annealing of (2C) for 5 days in 2/3 atm of ammonia at 380 °C did not change 

the peak widths in the X-ray spectrum. This indicates that the fundamental 

anionic tungsten-oxygen hexagonal framework is being formed on a submicron 

level but due to a shortage of cations in the reaction, further grain growth does 

not occur. 

Rietveld Refinement and Structure of Crystalline ATB (3E) 

Although single crystal diffraction studies have not been accomplished on 

the ATB, a detailed study of the structural analog Kq ggWOg using neutron and 

X-ray single crystal diffraction techniques was recently accomplished by Schultz 
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Figure 111-13. X-ray powder diffraction pattern of anhydrous WO3 (A) and 
corresponding pattern of the product resulting from the reaction 
of anhydrous WO3 and flowing ammonia at 400 °C for 4 days 
(B) 
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and coworkers^®. They reported a very complicated superstructuring Involving 

the cations which they modeled with the P63 space group and used only the I-

even reflections because of the poor correlation with 1-odd reflection intensities. 

Pye and Dickens^® reported the single crystal X-ray solution for Rbg 27WO3, 

solved in the space group P6322, instead of PGg/mcm reported by Magneli,^ 

because of c glide extinction violations observed in neutron diffraction data. 

The bronze in this work was refined initially in the space group PSg/mcm 

(refinement 1 ) because the only noticeable extinction violation for the c glide 

was a very small peak at 2.296 Â corresponding to the 10T3 reflection. A 

refinement in the space group P6g22 (refinement 2) that was attempted 

subsequently showed an improvement in certain parts of the refinement. 

Because of the differing space groups, the atomic coordinates are not 

comparable. The utility of using the lower symmetry space group is that it 

allows for the oxygen position to vary from z = 0 and fit more closely the 

puckered W-O rings found in single crystal studies of the hexagonal bronze, as 

well as providing an additional degree of freedom for the position of N along z 

(see Table III-1 and Table III-2). Although the isotropic temperature factors are 

closer to conventional values in RR2, RR1 allowed for refinement of anisotropic 

temperature factors for all non-deuterium atoms (although W and 0(2) refined 

to negative U values) with convergence whereas RR2 diverged when any non-

nitrogen temperature factor was refined anisotropically. Only N and 0(1) from 
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RR1 gave non-negative anisotropic temperature values; therefore N and 0(1) 

were the only atoms in the two refinements with refined anisotropic factors. 

RR2 gave a slightly better fit (with only 22 parameters refined) of the intensity 

data with R^, Rp and % values of 0.0536, 0.038 and 2.285 respectively 

compared to 0.0549 0.0386 and 2.504 for RR1 (with 26 parameters refined). 

Part of the reason for this improvement can be seen in a comparison of the 

Bragg R factors listed in hkl classes based on for the two refinements in 

Table III-5. The most obvious improvements of RR2 relative to RR1 are seen 

in classes -EO, OEO and EEO, in fact, most of the I = odd classes show an 

lower R factor for RR2. 

Nitrogen substitution 

This synthesis attempts to optimize the possibility of imido substitution for 

oxygen in the bronze. From Kjeldahl analyses of nitrogen in the bronze, y is 

0.06 in the formulation (NH^) 2gW0g_y(NH)y. In the XPS spectrum (Fig. 111-14) 

for 3A and 3E, two distinct types of nitrogen were observed. In the ammonium 

bronze (A), the N-1s peaks correspond to a small amount of metal bound 

nitrogen and a large percentage of ammonium nitrogen, while the XPS data for 

the tungsten imide (B), identifies primarily metal bound nitrogen. In contrast to 

the 3E spectrum, the XPS spectrum of ATB made from conventional 
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Table III-5. Comparison of Bragg Residuals Based on Selected hkl Classes 
for Refinement # 1 and Refinement # 2 using Space Groups 193 
and 182 

PGg/mcm (no. 193) P6322 (no. 182) 

hkl class Count " F'obs R  Count® R  

- - - 82 114 0.103 98 96 0.106 

E -  - 40 162 0.062 48 133 0.083 

o  —  42 69 0.195 50 60 0.154 

-  E  - 42 187 0.090 58 137 0.093 

- O - 40 38 0.172 40 38 0.173 

- - E  55 165 0.096 55 162 0.099 

- - 0  27 10 0.324 43 13 0.221 

E  E  - 24 252 0.054 32 187 0.078 

E O  - 16 26 0.178 16 27 0.155 

O  E  - 18 99 0.211 26 75 0.139 

O O  - 24 46 0.170 24 45 0.180 

E -  E  28 229 0.058 28 223 0.077 
0
 

LU 

12 5 0.464 20 8 0.321 

O
 

m
 

27 99 0.188 27 98 0.150 

O
 

6
 

15 14 0.282 23 18 0.183 

-  E  E  33 237 0.089 33 230 0.091 

-  E O  9 2 0.435 25 14 0.151 

-  G  E  22 58 0.143 22 59 0.146 

-  O O  18 14 0.316 18 12 0.338 
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Table III-4 continued: 

(no. 193) 
PSg/mcm P6322 (no. 182) 

hkl class Count c2 
obs R* Count R* 

E E E 19 319 0.054 19 309 0.0739 

E EO 5 0.136 0.689 13 7 0.331 

EO E 9 39 0.125 9 40 0.129 

E O O  7 9 0.461 7 9 0.306 

O E E 14 126 0.209 14 122 0.148 

G E O  4 5 0.426 12 21 0.084 

OO E 13 71 0.149 13 72 0.153 

O O O  11 18 0.268 11 14 0.35 

z
 

CO II 33 116 0.139 38 97 0.122 

L=3N+1 26 155 0.073 33 120 0.090 

L=3N+2 23 67 0.092 27 67 0.108 

H H L 23 167 0.083 23 166 0.106 

^ Refers to the number of reflections used in calculations. 
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Figure 111-14. XPS spectra of the N-1s emission from W(NH)2 (A) and the crystalline 
tungsten bronze (B). The tungsten imide has mostly metal-bound nitrogen while 
the bronze has mostly ammonium nitrogen. There is a small shoulder on the 
bronze peak which indicates that there Is a small amount of metal-bound nitrogen 
present in the bronze 
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ammonium paratungstate identifies only the ammonium nitrogen. The result that 

there was excess nitrogen in 3E and that, according to the XPS spectra, there 

was a small amount of metal-bound nitrogen present in the system provided the 

stimulus for the neutron study. The extent of nitrogen substitution was 

determined by allowing the fraction of nitrogen to be related inversely to that of 

oxygen in the final phase of refinement 1. The resulting substitution gave a 

refined nitrogen occupancy of 0.0074 and 0.0013 corresponding to 0(1) and 

0(2) respectively, which translates to a y value of 0.01, which is within the error 

of the experiment. Unreacted amorphous tungsten imido impurities in the 

bronze phase appear to account for the excess nitrogen found by Kjeldahl 

analyses, the metal-bound nitrogen seen in the XPS spectra, the undulating 

baseline in the neutron powder spectra and the low level of nitrogen substitution 

for oxygen from the Rietveld refinement. It has also been obsen/ed that there 

is an inverse correlation between crystallinity and nitrogen percentage. 

Crystallization of the bronze from the imide requires an oxygen source, such as 

water. Without an oxygen source, temperature, ammonia pressure and time 

variations have not been shown to induce crystallization in the amorphous 

tungsten imide. This is a strong indication that imido substitution has not 

occurred in the oxide bronze and that imide will not readily substitute for oxide 

in this bronze system. 
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Cation model 

Temperature dependent NMR studies of the ATB^^ have concluded 

that motion of the ammonium cation is due to rearrangement, localized hopping 

of the cations along the c axis and dissociative proton diffusion at room 

temperature. In order to model the cation three orientation models for the 

bronze were developed, of which, two allowed for temperature factor refinement 

of the D atoms (Fig. 111-11) without divergence. Model II produced the lowest 

residuals in bronze RR1 and yielded reasonable temperature factors for D. 

More significantly, the center area of the neutron difference map for the 

refinement using model II in Figure 111-15 shows zero neutron density for space 

corresponding to the D atom 1.1 À away from N(1) along [001], while the 

neutron difference map for the refinement of the bronze containing model I 

showed negative neutron density at the same location. In RR2, the orientation 

angle of the cation refined to 69° which substantiates the precession model. 

The observation that there is no D along the c axis is reasonable when the 

interactions between the ammonium deuterium and the oxygen atoms forming 

the hexagonal channel are considered. The distances from the nitrogen at 

0,0,0 to the apical and basal oxygens of the tungsten-oxygen octahedra are 

3.69757(16) À and 3.29262(11) Â, respectively. Based on van der Waals radii 

for H and O, the van der Waals distance for the N-D—O vector is 3.70 Â while 
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Figure 111-15. Neutron scattering density difference maps for refinement 1, 
using the precession cation model I, illustrating the region of 
space parallel to the a b plane. The center of (A) is the 0,0,0 N 
position while the center of (B) defines the theoretical location of 
D if model II were used. Zero neutron scattering density at the 
center of (B) supports the precession model I over model II with 
D along the z axis 
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the hydrogen bonding distance for the same vector is 2.90 À. Based on these 

distances there is certainly some interaction between D and the basal oxygen 

atoms and a slight interaction with the apical oxygen atoms. Because of this 

stabilizing interaction, it appears to be more favorable for all four deuterium 

atoms to be directed toward the oxygen atoms than three as shown in model I. 

A slight amount of excess neutron density was detected in the difference map 

at 0,0,0.25. When N was placed in this position and allowed to refine inversely 

with the N at 0,0,0, the amount present at 0,0,0.25 refined to 1 percent of the 

total N, which indicates that essentially all of the N is located at 0,0,0 in 

refinement 1. 

Physical Properties 

Solid state NMR spectra were obtained on static samples of the 

bronze material prepared from scheme I at three levels of crystallinity (Fig. III-

16). As the bronze material, 2A, becomes more crystalline the full-width at half-

height (FWHH) dimension narrowed, which indicated that the NMR active 

protons were in varying environments. There appear to be at least two proton 

environments contributing to the peak shape for the amorphous bronze NMR 

spectrum. The peak shape for the amorphous material can be understood in 

terms of a superposition of a relatively narrow resonance (arising from the 



www.manaraa.com

117 

I 

Figure 111-16. Solid state NMR spectra correlation with X-ray diffraction 
patterns for amorphous tungsten imide (A), a tungsten bronze 
phase of intermediate crystallinity (B) and crystalline ATB (C). 
The width of the spectral peak decreases with increasing 
crystallinity, reflecting a higher percentage of mobile ammonium 
protons 
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ammonium in the system) and a broadened peak (due to the limited mobility of 

the imido hydrogens). As the material becomes more crystalline the imido 

groups are replaced with oxide, thereby decreasing the number of low mobility 

protons in the system. The crystalline material (C in Fig. 11-16) then, has very 

few imido protons (as substantiated by XPS in Fig. 111-14) resulting in a peak 

width essentially reflecting only the mobile ammonium protons. 

Three separate electrical resistivity studies were accomplished on 

annealed pressed pellets of the ATB made from WNCIg. In each case, the 

electrical resistance decreased with increasing temperature (see Fig. 111-17), in 

contrast to a study which determined ATB to possess temperature dependent 

metallic properties.^ The resistivity of 3E at 293 K was 6x10'̂  ohm-cm which 

is comparable to the results of powder experiments on Kq gyWOg (5 x 10'̂ ) and 

Rbo29W03 (3 X 10'̂ ).^ Based on the electrical resistivity data (Fig. 111-18), 3E 

appears to be a low band gap semiconductor (Eg = 4.76 mev) that goes 

through a semiconductor/metal transition near room temperature. Impurities at 

the grain boundaries could also lower the conductivity to that of a 

semiconductor. Based on the metallic conductivity of other hexagonal tungsten 

bronze compounds, it is likely that the apparent semiconducting behavior in this 

ammonium bronze is due to impurities at the grain boundaries. 

The magnetic susceptibility of the crystalline bronze (2A) was measured 

at 1 Tesia over the range 6 K to 296 K (Fig. 111-19). The material was found to 
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be diamagnetic with a paramagnetic impurity accounting for the sharp increase 

in susceptibility at low temperatures. 
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Figure 111-17. Temperature dependent electrical resistivity measurement of ATB. The 
measurements were conducted using a four probe DC technique on pressed 
pellets, annealed in 2/3 aim. of ammonia at 400 °C for 5 days 
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Figure 111-18. Ln((Rj)/R293 k)) vs. (1/T) x 1000 plot for 3E over the temperature range 250 - 125 K 
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Figure 111-19. Magnetic susceptibility vs. temperature plot for crystalline ATB (2A), The peak in 
the molar susceptibility curve at 60 K Is due to paramagnetic dioxygen. The 
reciprocal molar susceptibility plot identifies the bronze as dlamagnetic with 
paramagnetic impurities accounting for the increase in susceptibility at low 
temperature 
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CONCLUSION 

Two new routes to the hexagonal bronze phase have been discovered. 

By the use of oxygenated reactants, WOg'ZHgO can be converted to the 

hexagonal bronze phase by reaction with flowing ammonia at 380 °C. More 

unique, is the new synthesis in which nitrogenated reactants have been used 

for the first time to synthesize an ammonium tungsten bronze (NH^)^ ggWOg. 

This pathway significantly improves the probability of imido substitution for 

oxygen in the anionic W-O lattice. The model for the ATB obtained from the 

Rietveld refinement of neutron powder diffraction data, XPS spectra of the 

bronze and the undulating background in the neutron data indicate strongly that 

nitrogen, in the form of imide, does not substitute to a measurable degree for 

oxygen in the anionic lattice of ATB. Space group P6322 more closely models 

the Bragg and histogram intensities relative to PSg/mcm. A c glide does not 

appear to be present in this structure, consistent with other structural studies of 

hexagonal bronzes. Over 99 percent of the ammonium nitrogen resides at 

0,0,0 while a small amount (<1 percent) Is found disordered at 0,0,0.25. The N-

D vectors of the ammonium cation are directed toward the oxygen atoms 

forming the hexagonal channels and not along [001]. A precession model of 

the ammonium cation. Model II, represents the best fit to the Rietveld 

refinement of the three orientations tested. 
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SECTION IV. SYNTHESIS AND CHARACTERIZATION OF 

MOLYBDENUM AZIDO COMPOUNDS AND THEIR 

THERMOLYTIC DECOMPOSITION TO YIELD 

MOLYBDENUM NITRIDES 
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INTRODUCTION 

Much of the work in molecular nitrido molybdenum compounds has been 

motivated by the discovery of the iron-molybdenum cofactor in nitrogenase^. 

The utility of converting molecular nitrogen into ammonia has far reaching 

economic significance. Perhaps the most investigated solid state molybdenum 

nitride is the cubic compound MoN (B1 structure type) which was initially 

predicted to be a high temperature superconductor^. Experimental results^ 

have shown that the B1 phase of MoN has a T^ as high as 14.9 K or as low as 

3 K, depending on the method of preparation. Attempts have been made to 

convert the hexagonal S-MoN to B1 MoN (1800 K and 6 Gpa) with no success^. 

In the case of lower nitrides, y-MOgN and P-MOgN, they represent the cubic 

high-temperature phase and the tetragonal low-temperature phase, respectively. 

These lower nitrides have been formed by direct reaction of the elements above 

1000 ®C at Ng pressures above 1 atmosphere®. As the reaction temperature is 

increased, the nitrogen pressure must also be elevated above the dissociation 

temperature of the nitride, which is 10 atm at 1020°C and 100 atm at 1380 °C 

for y-MogN. The formation of ô-MoN has not been observed in the reactions of 

Mo and Ng at temperatures between 600 and 1400 °C and pressures of 1 to 

300 atm® which is an illustration of the decreased thermodynamic stability of 

MoN relative to MOgN. The nitrides are formed under less severe conditions 
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when ammonia or other more active nitriding agents are reacted with the metal 

or more reactive molybdenum oxides or chlorides. Elevated temperature 

reactions of ammonia and finely divided molybdenum metal have led to the 

formation of 6-MoN ultimately in a reaction of the two components at 800 °C for 

a few hours and slowly cooling to 300 °C over a period of four weeks^. The 

reaction of ammonia and MoOg at elevated temperatures has been shown to 

yield the lower nitride, MogN®. Recently, the conversion of MoOg and 

ammonium molybdates to fee MOgN and hexagonal MoN, respectively, by the 

reaction of the oxides with ammonia at temperatures up to 625 °C, has been 

reported®. Through the use of inorganic synthetic procedures, highly reactive 

molybdenum compounds can be made and ideally converted to the known 

higher molybdenum nitrides at lower temperatures^® or can facilitate the 

synthesis of new nitrogen rich metal nitrides^ \ such as a molybdenum nitride 

with the empirical fomriula, MogNg. This higher nitride was formed by chemical 

vapor deposition from the reaction of tetrakis{dimethylamido)molybdenum (IV) in 

an ammonia stream at temperatures ranging from 200 - 400 °C. 

MoNg represents the final frontier in higher molybdenum nitrides and due 

to the inherent thermodynamic instability of this material, it may only be 

accessible as a low temperature, kinetically stabilized compound. In Section II 

of this work, WNg synthesis was attempted by starting with a tungsten 

compound in the +6 state and replacing all non-hydrogen ligands with nitrogen 
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by ammonoiysis, intramolecular oxidation-reduction and metathetic approaches. 

Although evidence for the formation of the anion WNgClg®" was found in that 

work, binary WNg was not made. Instead of starting with the metal in a high 

oxidation state and chemically altering its coordination sphere, this work focuses 

on the synthesis of new molybdenum azido compounds, and their thermal 

decomposition to yield higher metal nitrides at temperatures below 300 °C. 

Since the highest oxidation states of molybdenum are less stable with respect 

to reduction, relative to the tungsten analogs, lower oxidation state molybdenum 

azido compounds that can be internally oxidized have been prepared. 
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EXPERIMENTAL 

Materials 

The organic solvents, pyridine and butyronitrile, were dried according to 

procedures given in Section 11 of this report. Anhydrous ammonia (99.9%) was 

obtained from Matheson Gas Products. The ammonia was dried by passing 

the ammonia through finely divided CaHg prior to use in gas flow reactions. 

Trimethylsilylazide (TMSA) was obtained from Hûls Petrarch Systems, Inc. and 

transferred to a solvent flask and stored in the dark, under vacuum, to avoid 

hydrolytic and photolytic decomposition of the azide. Dimolybdenum 

tetraacetate 1^02(^2^3^2)4 was synthesized in this laboratory according to 

literature methodsl̂  IVIOgCl̂ py^ was also made in this laboratory, according to 

the following reaction: 

(1) Mo2(02CCH3)4 + 4{CH3)3SiCI + 4py => MOgCl̂ py^ + 4(CH3)3Si02CCH3 

A typical large scale reaction was completed by adding MogCOgCCHg)^ (4.00g, 

9.34 mmol) to a 250 mL reaction flask. Pyridine was syringed onto the acetate 

under a stream of inert gas. An excess of trimethylsilylchloride (8.56 g, 78.8 

mmol) was then added, by syringe, to the pyridine mixture. The compounds 

were allowed to react for 20 hours in refluxing pyridine. The red molybdenum 

chloride complex was then filtered and dried under dynamic vacuum for 24 hours. 
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Analytical Procedures 

Molybdenum content was determined by two methods. In the first, Mo 

was analyzed by the precipitation of the 8-hydroxyquinolate, 

M0O2(ONCgHg)2^ The samples were initially transferred to screw-top vials 

and weighed under argon. The samples were then poured into 250 mL 

beakers in the dry-box and covered with parafilm. The sample vials were 

reweighed and the sample mass was determined by difference. Dilute base 

(KOH) was then added to the beakers to initiate decomposition into the soluble 

molybdate ions. The solutions were heated to boiling and hydrogen peroxide 

was added to insure complete conversion to the molybdate. After complete 

conversion to MoO^^", the solutions were acidified with dilute sulfuric acid to a 

pH of 6-8 and then buffered with an acetic acid/ammonium acetate mixture. 

The analyte was precipitated by the addition of 8-hydroxyquinoline solution. 

The solid was filtered through tared fritted filters, washed with hot water and 

dried at 140 °C to constant weight. In the second method for molybdenum 

analysis, the samples were weighed by difference from the dry-box and used to 

prepare acidic solutions for analyses on the ICP maintained by Ames 

Laboratory. The solutions were prepared in this lab, within the range of pre-

made standards, and analyzed by Ames Laboratory staff. Nitrogen and carbon 

analyses were performed using the Dumas combustion method^on a Carlo 
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Erba Instruments NA1500 Nitrogen/Carbon/Sulfur Analyzer at the National Soil 

Tilth Laboratory, under the supervision of Richard Fifer. In this method 10-15 

mg, samples were weighed by difference in tin crucibles and placed in the 

instrument. The samples would first drop into an argon purged compartment 

and subsequently drop into a furnace, heated to 1021 °C, that was purged with 

pure oxygen. The nitrogen and carbon in the samples would first be converted 

to the corresponding oxides, by the high temperatures and oxygen atmosphere. 

The eluent was then passed over a bed of finely divided copper metal which 

would reduce the nitrogen oxides to Ng. The carrier stream was then passed 

through a chromatography column, separating out the Ng and COg components 

for subsequent determinations of C and N. Standards of acid aniline were run 

every seven samples for C and N comparisons. The standards were within 0.3 

percent of calculated value for N, while C values were low by 10 percent of the 

calculated amount. The carbon values obtained from this procedure were 

reported for comparative purposes only. 

Synthesis 

The following set of reactions involve the synthesis of molybdenum azido 

compounds. Because of their unknown sensitivity to heat, shock and friction, 

each new reaction in which a metal azide was the predicted product, was 
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placed in a vented hood and surrounded by blast shields consisting of 3/8" 

polycarbonate sheets. All synthesized azido materials were evaluated for their 

sensitivity. Frictlonal sensitivity was determined by grinding 1 -2 mg quantities 

with a mortar and pestai in the dry-box. Shock sensitivity was evaluated by 

allowing a hammer to drop on metal sheet containing a 1 -2 mg sample of the 

azide. The thermal stability of the azides was determined by heating the 

material in small quantities and observing thermal events visually or through 

thermal analyses (TGA/DTA). 

The X-ray powder diffraction data for the following materials were 

recorded using a specially designed sample holder for air reactive samples. 

The results of these diffraction tests show that the azide compounds 1A-2C, 

and the materials formed from the decomposition of molybdenum azide 

compounds, 3A-3C, are amorphous. Some of the X-ray diffraction data show 

broad peaks due to extremely small crystallites, but in each case the X-ray data 

are of little value in determining the identity of the compounds. 

Attempts have been made to grow crystals of IB and 1C by dissolving 

small amounts of the compounds in pyridine and layering ether on the top. 

Although, some solid was deposited in these experiments, the formation of 

crystals was not observed. 

MOgCOgCCHg)^ + X SiMCgNg -<pyridine>-> (1A, IB, 1C). This 

reaction can be considered analogous to the synthesis of Mo2Cl4py4, where 
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azide (considered a pseudo-halide in terms of its chemical reactivity) replaces 

chloride. The initial reaction conditions parallel those reported for the formation 

of the tetrachloro molybdenum dimer. Four moles and 8 moles of TMSA per 

mole of acetate dimer were used in separate reactions to form 1A and IB, 1C, 

respectively. In the first reaction, (0-525 g, 1.23 mmol) was 

added to a 100 mL reaction flask {X=4 in reaction above). TMSA (3.23 mL, 

4.91 mmol) and pyridine were added to the acetate by syringe, with the pyridine 

preceding the TMSA addition by 5 minutes. The mixture was allowed to react 

under a stream of argon at refluxing temperature for two days. The solution 

became deeply colored upon the addition of TMSA. The black product (1A) 

was extremely soluble in pyridine. Most of the product passed through the filter 

frit, and thus was isolated by distilling the volatile components from the filtrate 

under reduced pressure. Based on the IR spectrum of 1A (Fig. IV-1), it was 

clear that the reaction had not gone to completion, in contrast with the 20 hour 

reaction time required for the formation of MogCl̂ py^. The difference in 

solubility between MOgCl̂ py^ and 1A in pyridine was dramatic. This was the 

first indication that the product, 1 A, did not ultimately form the desired product, 

Mo2(Ng)^py^. It was envisioned that the reaction may go to completion if 

TMSA was added in excess and the reaction time was increased. Therefore, in 

the second reaction, 1^/102(^2^^^3)4 (1 OO9, 2.34 mmol) was reacted 
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Figure IV-1. Comparative mid IR spectra (Nujol) of l\/l02(02CCHg)^ (A) and 
1 A, the product of the incomplete reaction of IVl02(02CCHg)^ 
with 4 moles of TMSA in pyridine (B). The peak at 2058 cm"^ 
in (B) is the asymmetric stretching mode of azide 
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in a manner analogous to the preceding scheme, with TMSA (2.46 ml, 18.7 

mmol) in approximately 40 mL of pyridine, for 7 days in refluxing pyridine. The 

solution was filtered and two components were isolated; one material, with 

apparent low pyridine solubility (1B), on the ceramic filter and a second fraction 

which had a higher pyridine solubility (1C), in the receiver flask. A comparison 

of the IR spectra for IB and 1C is given in Figure IV-2. The empirical 

formulation for products IB and 1C is MoN(Ng)py^. Anal. Calc. for 

MoN(Ng)py^ : Mo, 41.54; N, 24.57; Mo:N, 1:4 (not including the N from 

pyridine). Found for IB: Mo, 39.6; N, 21; Mo:N, 1:3.6 (accounting for only the 

azide and nitride nitrogen). Found for 1C: Mo, 39.3; N, 22; Mo:N, 1:3.8 

(accounting for only the azide and nitride nitrogen). 

MOgCl^py^ + SIVIegSiNg -«pyridine, butyronitrile>-> (2A, 2B, 2C, 2D). 

MogCl̂ py^ (1.490 g, 2.3 mmol) was loaded into a 100 mL reaction flask. 

Approximately 35 mL of pyridine was syringed onto MOgCl̂ py^, followed by 

TMSA (2.41 mL 18.4 mmol). The resulting solution was not deeply colored, 

even after the azide addition. MogCl̂ py^ is relatively insoluble in pyridine so 

the reaction is less facile than the corresponding reaction of TMSA and 

Mo2(02CCHg)^. The reactants were mixed at ambient temperature for four 

days, at which time there appeared to be remaining MogCl̂ py^ in the flask; 

therefore the reaction was heated to reflux and allowed to mix for an additional 
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Figure IV-2. Comparison of tlie IR spectra (Nujol) of 1B (A) and 10 (B) wtiich are the insoluble and 
soluble products of a M02(O2CCHg)^/TMSA (1:8 mole fraction) reaction in pyridine, 
respectively. Most of the narrow bands are attributed to pyridine modes while the 
peaks at 2056 and 944 cm'̂  are attributed to the asymmetric azide vibration mode 
and the multiple Mo-N bond vibrations, respectively 
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2 1/2 days. The material was filtered and two components were isolated. The 

insoluble fraction (2A) was isolated on a ceramic frit, while the soluble fraction 

(2B) was isolated by solvent removal from the filtrate under reduced pressure. 

The yields for 2A and 2B were 0.160 and 0.710, respectively. For a 

comparison of the IR spectra for 2A and 2B, see Figure IV-3. Anal. Calc. for 

MoN(Ng)py: Mo, 41.54. Found for 2A: Mo, 40.6. 

Due to the apparent insolubility of MOgC^py^ in pyridine, butyronitriie 

was substituted for pyridine in one experiment, in an effort to increase the 

solubility of the chloride. MogCl̂ py^ was solubilized more quickly in 

butyronitriie than pyridine. MOgCl̂ py^ (2.230 g, 3.43 mmol) was reacted with 

TMSA (2.71 mL, 20.61 mmol) in 40 mL of butyronitriie utilizing similar 

procedures as those used in the synthesis of 2A and 28. The reaction was 

conducted under reflux for 7 days. After filtration, one solid was isolated on the 

frit (2C) and the other was isolated from the filtrate (2D) after the volatile 

components were removed under reduced pressure. A comparison of the IR 

spectra for 2C and 2D is shown in Figure IV-4. 

NMR study of M02(02CCHg)^, MOgCl̂ py^ reactivity with TMSA. 

Mo2(02CCH3)4 (20.4 mg, 0.048 mmol) was added to a 5 mm NMR tube. 

TMSA (0.05 mL, 0.38 mmol) and 4 mL of deuterated pyridine were syringed 

and distilled, respectively, onto the acetate and the tube was sealed by fusing 

the end. Immediately afterwards, TMSA (0.05 mL, 0.38 mmol) and 4 mL of 
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Figure IV-3. IR spectra comparison (Nujol) of 2A (A) and 2B (B). The two samples were obtained 
from the same reaction of MOgCl̂ py^ and excess TMSA in pyridine and differ in their 
pyridine solubilities. The two spectra are essentially identical. Aside from the pyridine 
peaks, the peaks at 2051 and 930-973 cm"^ identify an azide stretching mode and 
•u(Mo=N), respectively 
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Figure IV-4. IR spectra comparison (Nujol) of 2C (A) and 2D (B). The two samples were obtained 
from the same reaction of MOgCl̂ py^ and excess TMSA in butyronitrile 
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deuterated pyridine were added to an NMR tube containing MoQCI^py^, (30.9 

mg, 0.048 mmol). Four spectra were taken for each tube at different time 

intervals (see Fig. IV-5, 6). For the first 15 days, of the 18 day reaction, the 

two NMR tubes were left at ambient temperature. For the last three days, the 

tubes were placed into a oil bath at 90 °C to complete the reactions. 

Thermal decomposition of MoN(N3)py (1B) In flowing Ar (3A). Initial 

thermal decomposition studies were performed on a vacuum line for samples of 

IB. The material was heated under dynamic vacuum and a correlation 

between sample temperature and line pressure was determined. The vacuum 

line traps were cooled with liquid Ng, therefore any nitrogen given off in the 

thermal decomposition of the azide increased the total pressure in the line. All 

volatile organics were condensed in the Ng traps. Sample 1B, heated in this 

manner, showed a pressure maximum at 240 °C. The reaction was then 

repeated in an argon environment. 1B (50 mg) was placed in a dried pyrex 

tube which was inserted into a sand bath for heating. An atmosphere of argon 

was maintained by flowing the gas through the upper joint of the reaction tube. 

Under these conditions, 1B was heated for 18 hours at 250 °C to yield 3A. IP 

spectra contrasting 1B with the thermolyzed product, 3A, is reported in Figure 

IV-7. The nitrogen and carbon percentages for 3A were: N, 16; C, 24, 

rswpectively. Thermal gravimetric and differential thermal data were obtained 

for 3A (see Fig. IV-8). 
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Figure IV-5. NMR spectra for the reaction of h/102(02CCHg)^ with TMSA (1:8 mole ratio) in deuterated 
pyridine. The peak attributed to TMSA decreases with time by reacting to form the acetate 
compound. The facile nature of the acetate in this reaction is demonstrated 
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Figure IV-6 NMR spectra for the reaction of MOgCl̂ py^ with TMSA (1:8 mole ratio) in 
deuterated pyridine. Only a small amount of the chloride has reacted after 15 days 
and it is not until refluxing is employed that any significant amount reacts 
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Figure IV-7. Mid IR spectra (Nujol) of MoN(Ng)py (1B) and the 
product of heating 1B at 200 °C in flowing argon 
(3A) corresponding to (A) and (B), respectively. Note 
that there is still significant functionality in (B) 
indicating probable inclusion of carbon compounds 
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Figure IV-8. TG\DTA of MoN(Ng)py (1B) in flowing argon. The line (A) represents the temperature, 
while (B) accounts for the weight variation (TGA) and (C) is the DTA cun/e in which 
heat capacity changes are recorded 
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Thermal decomposition of IVIoN(Ng)py (1B, 1C) in flowing ammonia. 

Due to the high carbon content determined for 3A, a variation of environment 

was considered. Ammonia was used to replace the pyridine ligands and lower 

the amount of carbon included in the pyrolysis product. A special reaction tube 

was built, which consisted of 14 inches of 12 mm (OD) pyrex tube capped on 

the ends by an inner or outer 24/40 ground glass joint and a ceramic filtering frit 

centered between the ends. In the reaction, a powdered sample was placed in 

the glass tube, on the course ceramic fritted disl< to maximize exposure of the 

powder to ammonia flowing through the tube. 1B (0.261 g) was placed on the 

frit in the reaction tube and in a flowing ammonia environment, heated at 130°C 

for 3 hours, producing (38). 0.161 grams of 38 were recovered. Peaks 

corresponding to pyridine vibrational modes were observed in the IR spectrum 

of 38 (see Fig. IV-9), thus the reaction of 38 was pursued at higher 

temperatures in an atmosphere of flowing ammonia. 38 was heated to 180 °C 

in an atmosphere of flowing ammonia. At 180 °C the flow of ammonia was 

stopped and the reaction vessel, which was connected to a mercury bubbler, 

was allowed to heat further to 280 °C. At 223 °C rapid bubbling was observed 

from the bubbler, which indicated azide decomposition. The temperature was 

lowered to 200 °C and the ammonia flow was resumed. The reaction was 

continued at 200 °C under flowing ammonia for 12 hours, which resulted in the 

isolation of 0.076 grams of a low density black powder (3C) with no IR active 
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Figure IV-9. IR spectra (Nujol) illustrating the influence of heat and ammonia atmospheres on 
ammonia substitution for pyridine and thermal decomposition of MoN(N3)py (1B). 
Spectra (A), (B) and (C) correspond to 18, 38 and 3C, which were reacted at 
successively higher temperatures 
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bands (see Fig. IV-9}. The nitrogen and carbon percentages for 3C are 18 and 

5, respectively, in a related experiment, 1C (0.200 g) was placed in the reaction 

tube described previously and heated in flowing ammonia for 1 hour at 150 °C. 

Then the temperature was increased to 280 °C and held there for two hours. 

As the material was heating, an explosion was heard at a temperature of 241 

°C. Finely divided black powder was scattered throughout the tube as a result 

of the azide decomposition. The black powder was heated for an additional 

two hours in flowing ammonia at 280 °C and isolated as a low density powder 

in the drybox (3C). Anal. Found for 3C: Mo, 70.0,; N, 18; C, 5; Mo:N, 1.0:1.8. 

IR spectra illustrating the differences between the starting material, 1C, and the 

final molybdenum nitride, 3C, is found in Figure IV-10. 

Physical Measurements 

The X-ray diffraction data for finely ground powders of 1A - 3C were 

obtained from a Philips ADP3520 diffractometer using Cu Kot^ and Kog 

radiation. The samples were analyzed on zero-background quartz plates using 

the Philips environment cell reported in Section I of this work. X-ray 

photoelectron spectra were obtained from a Perkin Elmer model 5500 Multi-

Technique system by James Anderegg at Ames Laboratory. Solution NMR 

was obtained from a Nicolet MS-300, maintained by the Instrument Services 
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Group at iSU. Analysis of the volatile components produced during thermolysis 

of IB was performed by using a Rnnigan mass spectrometer (maintained and 

operated by Chemistry Instrument Services) coupled to a reaction tube through 

thick-walled glass capillary tubing, infrared spectra were obtained from a IBM 

IR/90 or a Bomem MB-Series Fourier transform infrared spectrometer. The 

samples were prepared as Nujol mulls and pressed between Csl plates. 
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Figure IV-10. IR spectra (Nujol) of 1C and 3C, A and B, respectively, wliich illustrate the change in 
functionality in 1C as it is heated in ammonia to 280 °C to form a solid state molybdenum 
compound with a metal-nitrogen ratio of 4:7 
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RESULTS AND DISCUSSION 

Mo2(02CCH3)4 and MOgCl^py^ Reactivity 

Based on the similarities between the chemistry of chloride and the 

"pseudo halide," azide, one might expect the reaction of MOgCOgCCHg)^ with 

excess TMSA to yield Mo2(Ng)4py^, analogous to the product, MogCl̂ py^, 

formed from the reaction of with excess trimethylsilylchloride 

(TMSC). The molybdenum percentage in l\/102(Ng)4py^ is 28.39, whereas the 

molybdenum composition in IB, 1C, 2A and 2B is ca. 40 %. Obviously, the 

azide analog of MOgCl̂ py^ is not formed in the reactions forming 1B-2B. In 

related research, Chatt and Dilworth^® began with the bis-dinitrogen compound 

of molybdenum, Mo(N2)2(dppe)2 (dppe = Ph2PCH2CH2PPhg), and reacted it 

with TMSA to yield MoN(Ng)(dppe)2. In a discussion of the probable pathway 

to azido-nitrido formation from both the molybdenum and tungsten bis-

dinitrogen compounds, Leigh, et. al.^® discussed a disproportionation from a 

postulated intermediate, l\/1(N2)(Ng)(dppe)2, to produce both M{N2)2{dppe)2 and 

M(Ng)2(dppe)2. The latter decomposes to IVIoN(Ng)(dppe)2 and molecular 

nitrogen. Based on this result, one would reasonably expect Mo2(Ng)4py^ to 

form as an intermediate in the synthesis of 1B, 1C, 2A and 2B. In the former 

study^®, the nitride-azide of molybdenum was characterized as having two 
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distinctive absorptions in the IR region. One corresponded with ^(Ng) at 2040 

cm'̂  and the other was assigned to \)(M<^N) at 980 cm'\ in each of the 

spectra generated for compounds 1B - 2C there is the distinctive peal( 

attributed to D(Ng) in the range 2051 - 2056 cm"^ and a less obvious, 

broadened band centered at 944 cm,'̂  but covering a range of 1000 - 900 cm," 

^ corresponding to the 'i){M(^N). 

There is some question as to the exact identity of 1B-2B. All the 

products have the same IR spectral features and have the same molybdenum 

content (within experimental uncertainty), but they differ in their pyridine 

solubility. The IVIoN(Ng)py compound is obtainable from the molybdenum 

acetate or the chloride dinners. The XPS spectra comparing the N-ls emissions 

of 1B (insoluble in pyridine) and 1C (soluble in pyridine) is given in Figure IV-

11, while the XPS spectra of the Mo-3d emissions for the same compounds are 

given in Figure IV-12. In Figure IV-12, the two Mo-3d peak intensities and 

shapes are essentially identical for 18 and 1C, which indicates that each 

molybdenum is in a similar environment and oxidation state. With the 

empirical formula of MoN(Ng)py, it is highly unlikely that the material is 

monomeric. More consistent with the elemental data is the formation of a 

double dimer with multiple bonded nitrogen bridges connecting the dimers. 



www.manaraa.com

9" 

8 "  

4 

2 "  

415 405 400 395 390 410 
BINDING ENERGY. eV 

Figure IV-11. X-ray photoelectron spectra of N Is emissions for related materials. IB (A) and 
1C (8) were made from the same reaction but differ in their solubility in pyridine. 
The peak at 395 eV for 38 (C) is formed as a result of thermal decomposition 
and represents a nitride-like nitrogen 
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Figure IV-12. XPS spectra of tlie Mo 3d leveis. 1B (A) and 2B (8) are very similar in 
molybdenum environments while the SB (C) peaks have shifted to lower binding 
energies, indicative of condensed nitrides 
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NMR Studies of Mo2(02CCHg)^ and MOgCl^py^ Reactivity 

The reactions between the two molybdenum compounds, 

MOgCOgCCHg)^, MOgCl̂ py^ and TMSA has been followed by NMR in py(dg) 

(see Fig. IV-5,6 for M02(O2CCHg)^ and M02Cl̂ y^ reactions, respectively). 

The mole ratio of dimer to azide was 1:8 in the reactions. A contrast is seen 

between the spectra for the two reactions. In Figure IV-5 the largest peak in 

the 3 hour spectrum corresponds to TMSA while after 5 days at ambient 

temperature the azide peak was reduced significantly, which resulted in the 

peak corresponding to the product of the metathesis, (CHg)gSi02CCHg, 

becoming much larger. In the case of MogCl̂ py^ (see Fig. IV-6), the peak 

identifying the TMSA protons does not decrease noticeably relative to the azide 

peak in the 3 hour spectrum. In fact, it is only after the chloride material is 

brought to refluxing temperatures that MOgCl̂ py^ reacts with TMSA to form 

TMDC. It was observed that after three days the solvent for the 

Mo2(02CCH3)4 reaction was deeply colored, with no evidence of the 

molybdenum acetate. After three days, the solvent in the MogCl̂ py^ NMR 

tube was only weakly colored and most of the red molybdenum chloride could 

be seen unreacted in the tube. The observation that both the MegSiOgCCHg 

and MegSiCI were formed in the reactions indicates that the 

tetraazidomolybdenum dimer may form as an intermediate before 
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decomposition to the mononitride. 

Thermal Decomposition of IVIoN(Ng)py. 

1B was placed in a reaction tube and heated at 5 °C/min, from 25 °C to 

590°C, in a reduced pressure environment. A thick-walled glass capillary tube 

connected the reaction tube to a Finnigan mass spectrometer which evaluated 

the volatile components of the pyrolysis (see Fig. IV-13). The masses giving 

the highest ion current were 79 and 28 corresponding to pyridine and nitrogen, 

respectively. The azide decomposes at 257 ®C, according to the mass spectral 

data. Some variability in determination of the azide decomposition temperature 

resulted from the placement of the thermocouple and the atmosphere present 

during decomposition of the azide. The agreement between the mass spectral 

and TG\DTA data (Fig. IV-8) is reasonable even though the decompositions 

were conducted in vacuum and argon, respectively. In the TG/DTA plot the two 

exotherms occur at 220 and 420 °C. The former temperature correlates with 

the azide decomposition occurring at 257 °C. A large amount of carbon was 

retained in the thermolysis product when 1B was decomposed in an inert 

atmosphere. The decomposition of the MoN(Ng)py was complicated by pyridine 

retention in the molecular precursor and in the final material after 

decomposition. 3A was produced when 1B was heated in an argon 
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Figure IV-13. A mass spectral thermal decomposition study of IB under 
dynamic vacuum. IB was heated at a ramp of 57min from 25 
to 590 °C and the volatile components were analyzed with a 
Finnigan mass spectrometer. Ions with masses 28 and 79 were 
predominant at temperatures under 300 °C 
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atmosphere. The final product contained a high percentage of C. The N and C 

analyses for 3A were 16 and 24, respectively. The retention of carbon was 

also seen in samples heated under vacuum. Again, in Figure IV-13, the total 

ion current was very intense at 350 °C. The ions accounting for this current are 

mostly carbon fragments from organic materials used in the reaction. The fact 

that there was a significant amount of carbon containing materials being 

evolved after the azide decomposition, leads to the conclusion that the carbon 

levels would be relatively high in the product of MoN(Ng)py decomposition at 

280 °C under reduced pressure. 

It has been shown that the carbon levels in the decomposition products 

3B and 3C are significantly reduced. The N and C percentages are 18 and 5, 

respectively for both 3B and 3C. This reduction in carbon percentage is due to 

the ammonia atmosphere used when heating the molybdenum azides. The fact 

that there was still C present in the system is less than ideal but the Mo:N ratio 

of 1:1.8 is highly encouraging. XPS spectra of the N Is peak and the Mo 3d 

emissions were obtained for IB, 1C and 3B (see Figures IV-11,12). In Figure 

IV-11, sample 3B shows a similar type of nitrogen to 1B and 1C at a binding 

energy of 398 eV. However, the N peak at 395 eV for 38 is unique among the 

three samples. A new type of nitrogen is being produced by the decomposition 

of the azide. This nitrogen at lower binding energy is very close to the value 

reported for WN of 395 eV,^^ in contrast to alkyi ammonium nitrogen at 399-
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400 eV.^® In Figure IV-12, the molybdenum 3d peaks are shifted to lower 

binding energies for the decomposition product, 3B. Although, one expects a 

general increase in binding energy as oxidation state increases, this reasoning 

only applies for compounds in similar environments. Reasonable comparisons 

for the binding energy of SB, can be found in molybdenum oxides. For 

comparative purposes, the Sdg/g binding energies for the iow energy 3d peak of 

Mo, MoOg and M0O3 are 227.9, 229.3 and 232.6 eV,^^ respectively, while the 

3dg/2 B.E. of 3B is 229.5 eV. Based on this, it is probable that molybdenum in 

SB Is in an oxidation state from +3 to +5. 
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CONCLUSION 

By the apparent metathetic substitution of azide for acetate and chloride 

in Mo2(02CCH3)4 and MOgCl̂ py^, respectively, and subsequent decomposition 

of the metal azide, a new molybdenum nitride azide with the empirical formula 

MoN{N3)py, has been synthesized. The same product is produced by using 

either molybdenum dimer, although M02{O2CCH3)4 is a more facile reactant 

because of its higher pyridine solubility, relative to that of Mo2Cl4py4. Because 

the azide decomposition is occurring on a molecular level, one could expect 

extremely high surface areas in materials isolated immediately after 

decomposition. Due to the high expected surface areas of these compounds, 

their catalytic properties may be of interest. The observation of a molybdenum 

(II) azide decomposition into a molecular molybdenum nitride azide has been 

reported.^ This finding lends support for a l\<102(^3)4Py4 infermediate which 

decomposes at refluxing temperature to give "MoN(Ng)py'' as the observed 

product. MoN(Ng)py can be decomposed thermally at 250 °C, in an 

atmosphere of ammonia, to evolve nitrogen and form a molybdenum-nitrogen 

compound with Mo:N, 1:1.8. When IVIoN(Ng)py was decomposed in an inert 

gas environment or under reduced pressure, the solid has been shown to retain 

at a high level of carbon, based on elemental analyses and mass spectral 

information correlated with MoN(N3)py thermal decomposition. 
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SUMMARY 

The tetrameric compound, [WNCIg]̂ , has been characterized structurally 

by single crystal X-ray diffraction techniques. WNCIg appears to coordinate 

DCE solvent molecules in a 4:1 ratio (WNCIgzDCE) to produce a phase differing 

from uncoordinated WNCIg. The reaction of WNCIg with TMSA, yields a 

material corresponding to the formula, WN(Ng)Cl2. The thermal decomposition 

of WN(Ng)Cl2 follows a pathway inconsistent with the formation of WNg, the 

desired product. This decomposition appears to reduce the metal as the azide 

is oxidized to Ng. In related work, evidence for the anion, WNgClg^", has been 

found from the reaction of WNCIg and LigN in coordinating and non-

coordinating solvents. 

Ammonium tungsten bronze, (NH^)Q ggWOg, has been synthesized 

through a new route involving the ammonolysis of WNCIg. The utility of this 

procedure was found in a tungsten imide intermediate, which increases the 

potential of isoelectronic imido substitution for oxide in the bronze, relative to 

conventional syntheses. Even though the tungsten bronze was made with a 

nitrogenated reactant, it was found, from a Rietveld refinement of neutron data 

for the bronze, that imide does not substitute for oxide to a measurable degree, 

in the ammonium bronze phase. 

A new molybdenum azide, MoN(N3)py, was synthesized by apparent 
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decomposition of the intemiediate Mo2(Ng)^py^. Two separate routes, using 

Mo2(02CCHg)^ or MOgCl̂ py^ reacted with TMSA, produce the same material, 

MoN(N3)py. Thermal decomposition of MoN(Ng)py in argon, at 250 °C, results 

in a material containing 24 percent C, and 16 percent N. When MoN(Ng)py is 

decomposed thermally in ammonia, at 200 to 280 °C, the resulting product has 

the percent composition: N, 18; C, 5; Mo, 70. The ratio of Mo to N is 1:1.8. of 

The products from the thermal decomposition of MoN(Ng)py have low densities, 

and therefore, may be of interest in catalytic applications. 
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